Solid State Science and Technology, Vol. 16, No 1 (2008) 147-152

ISSN 0128-7389

Corresponding Author: zainalat@fsas.upm.edu.my

147

STRUCTURAL AND ELECTRICAL CONDUCTIVITY STUDIES OF

POLYCRYSTALLINE COPPER SELENIDE AT LOW TEMPERATURE

Z.A. Talib1, L.Y.C. Josephine1, W.M.M. Yunus1, Z, Zainal2, S.A. Halim1,

M.M. Moksin1, K.P. Lim1, W.D.W. Yusoff1.

1Department of Physics, Faculty of Science,

Universiti Putra Malaysia,

43400 UPM, Serdang.

2Department of Chemistry, Faculty of Science,

Universiti Putra Malaysia,

43400 UPM, Serdang.

 

ABSTRACT

This paper reports the structural and electrical conductivity characterization of the copper selenide (CuSe) metal chalcogenide semiconductor in bulk form. In situ X-ray powder diffraction analysis of CuSe at low temperature (100 300 K) is studied to support the electrical conductivity analysis. The electrical conductivity of the polycrystalline CuSe was measured and analyzed at low temperature (100 to 286 K) using 4 point probe technique. The electrical conductivity values obtained were in the range of 1.69 x 103 to 2.58 x 103 S/cm.

 

http://journal.masshp.net/wp-content/uploads/Journal/2008/Jilid%201/Z.A.%20Talib%20147-152.pdf

 

REFERENCES

[1]. F. Yakuphanoglu and C. Viswanathan, (2007); Journal of Non-Crystalline

Solids, 353, pp. 2934.

[2]. D. Lippkow and H. H. Strehblow, (1998); Electrochimica Acta, 43, 2131.

[3]. H. M. Pathan, C. D. Lokhande, D. P. Amalnerkar and T. Seth, (2003); Applied

Surface Science, 211, 48.

[4]. M. Dhanam, P. K. Manoj and R. R. Prabhu, (2005); Journal of Crystal Growth,

280, 425.

[5]. S. C. Deevi, (2000); Intermetallics, 8, 679.

[6]. V. M. Bhuse, P. P. Hankare, K. M. Garadkar and A. S. Khomane, (2003);

Materials Chemistry and Physics, 80, 82.

[7]. R. B. Shafizade, I. V. Ivanova and M. M. Kazinets, (1978); Thin Solid Films,

55, 211.

[8]. P. Nandakumar, A. R. Dhobale, Y. Babu, M. D. Sastry, C. Vijayan, Y. V. G. S.

Murti, K. Dhanalakshmi and G. Sundararajan, (1998); Solid State

Communications, 106, 193.

[9]. R. D. Heyding and R. M. Murray, (1976);Canadian Journal of Chemistry 54,

841.

[10]. I. Grozdanov, (1994); Synthetic Metals, 63, 213.

[11]. J. F. Perez-Robles, F. J. Garcia-Rodriguez, J. M. Yanez-Limon, F. J. Espinoza-

Beltran, Y. V. Vorobiev and J. Gonzalez-Hernandez, (1999); Journal of Physics

and Chemistry of Solids, 60, 1729.

[12]. P. K. Nair, M. T. S. Nair, V. M. Garcia, O. L. Arenas, A. C. Y. Pena, I. T.

Ayala, O. Gomezdaza, A. Sanchez and J. Campos, (1998); Solar Energy

Materials and Solar Cells, 52, 313.

[13]. E. Andrade, V. M. Garcia, P. K. Nair, M. T. S. Nair, E. P. Zavala, L. Huerta and

M. F. Rocha, (2000); Nuclear Instruments and Methods in Physics Research

Section B: Beam Interactions with Materials and Atoms, 161-163, 635.

[14]. L. B. Valdes, (1954); Proceedings of the IRE, 42, 420.

[15]. R. Seoudi, A. A. Shabaka, M. M. Elokr and A. Sobhi, (2007); Materials Letters,

61, 3451.

[16]. R. E. Hummel, (2001); Electronic Properties of Materials, Springer-Verlag,

New York, Berlin, Heidelberg, Barcelona, Hong Kong, London, Milan, Paris,

Singapore, Tokyo.