Solid State Science and Technology, Vol. 16, No 1 (2008) 160-167

ISSN 0128-7389

Corresponding Author: yudi@fi.itb.ac.id

160

SIMULATION OF NON-VOLATILE MOS MEMORY USING Si QUANTUM DOT WITH Ge CORE AS ELECTRONICS STORAGE NODE

 

Yudi Darma, Tri Fatirahman, Rizal Kurniadi

Quantum Semiconductor and Device Lab. Department of Physics,

Institut Teknologi Bandung, Ganesa 10 Bandung 40132, Indonesia

 

ABSTRACT

The MOS memory using Si quantum dot with Ge core as a floating gate has been discussed and improved. The major concern of using Ge core cladding by Si nanocrystals is to enhance the carrier confinement effect since the energy gap of Ge is narrower than that of Si, a compound well could be formed in the center of the dot and the charge could be stored mainly in the side of Ge core. As the result, the retention time could be increase significantly without deteriorating the writing/erasing speed. The simulation shows that the flash memory with the dot size of 9-12nm in diameter possesses a retention time up to 109 or about ten years with a 2nm-thick tunnel oxide, while the writing and erasing time is at the order of μs which is similar to that of the memory based on pure Si quantum dot. Moreover, cladding Ge by Si nanocrystal allows us to keep the good Si-SiO2 interface instead of poor Ge-Oxide interface.

 

http://journal.masshp.net/wp-content/uploads/Journal/2008/Jilid%201/Yudi%20Darma%20160-167.pdf

 

REFERENCES

[1] L. Vescan, (1998); J. Cryst. Growth, 194, 173.

[2] T.I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg, R.S. Williams, (1999); J.

Appl. Phys., 85, 1159.

[3] J. Wan, Y. H. Luo, Z. M. Jiang, G. Jin, J.L. Liu, Kang L. Wang, X.Z. Liao and J.

Zou, (2001); J. Appl. Phys. 90 (8), 4290.

[4] R. Schorer, E. Friess, K. Eberl, G. Abstreiter, (1991); Phys. Rev. B, 44, 1772.

[5] S. Miyazaki, Y. Yamamoto, E. Yoshida, M. Ikeda and M. Hirose, (2000); Thin

Solid Films, 369, 55.

[6] Y. Darma, R. Takaoka, H. Murakami, S. Miyazaki, (2003);Nanotech. 14 No. 4,

413-415.

[7] M. I. Alonso and K. Winner, (1989); Phys. Rev. B 39, 10056.

[8] Y. Darma, H. Murakami and S. Miyazaki (2003); Jpn. J. Appl. Phys. 42 No. 6B

4129-4133

[9] Y. Darma, H. Murakami, S. Miyazaki, (2004); Appl. Surf. Sci., 224, 156-159.

[10] Y. Darma, K. Takeuchi, S. Miyazaki, (2003); Ext. Absr. 2003 Int. Conf. Solid

States Devices & Materials, Tokyo, 300-301.

[11] Y.Darma and S. Miyazaki, Digest of Papers of 2003 International

Microprocesses and Nanotechnology Conf. (MNC2003), 29-31 Okt 2003,

Tokyo, Japan, 22-23.

[12] L. Guo, E. Leobandung, and S. Y. Chou, (1997); Science, Vol. 275, 649-651.

[13] J. Singh, (2000); Semiconductor Devices: Basic Principles. New York: Wiley.

[14] Z. A. Weinberg, (1982); J. Appl. Phys., vol. 53, 5052-5056.

[15] L. F. Register, E. Rosenbaum, and K. Yang, (1998); Appl. Phys. Lett., Vol. 74,

457-459.

[16] Y. Ando and T. Itoh, (1986); J. Appl. Phys., Vol. 61, 1497-1502.