ABSTRACT
CaCu$_3$Ti$_4$O$_{12}$ (CCTO) was prepared by a conventional solid state reaction method. CCTO sample was pre-sintered at 900°C for 10 hours and sintered at 1075°C for 12 hours. The dielectric properties of the sample were measured using HP 4192A LF Impedance Analyzer. The complex permittivity was measured within the frequency range from 10 Hz to 106 Hz and the temperature ranging from 30°C to 400°C. The results showed that the dielectric constant and dielectric loss factor of the sample are frequency dependent and temperature dependent. CCTO sample exhibits a high dielectric constant which is around 105. Dielectric constant increases with decreasing frequency due to interfacial polarization. This could be explained by the Maxwell-Wagner effect.

REFERENCES
[3]. Jing Yang, Mingrong Shen, Liang Fang, (2005); The electrode/sample contact effects on the dielectric properties of the CaCu$_3$Ti$_4$O$_{12}$ ceramic, Materials Letters 59 3990 – 3993
[5]. B.A. Bender, M.J. Pan, (2005); The effect of processing on the giant dielectric properties of CaCu$_3$Ti$_4$O$_{12}$, Materials Science and Engineering B 117, 339–347
[6]. C.C. Wang, Y.J. Yan, L.W. Zhang, M.Y. Cui, G.L. Xie, B.S. Cao, (2006); Maxwell–Wagner relaxation in CaCu$_3$Ti$_4$O$_{12}$/Ag composites, Scripta Materialia 54, 1501–1504
[7]. Guo-Ling Li, Zhen Yin, Ming-Sheng Zhang, (2005); First-principles study of the electronic and magnetic structures, Physics Letters A 344, 238–246
[11]. Prasit Thongbai, Chivalrat Masingboon, Santi Maensiri, Teerapon Yamwong,
Supattra Wongsaenmai and Rattikorn Yimnirun, (2007); Giant dielectric behaviour of CaCu3Ti4O12 subjected to post-sintering annealing and uniaxial stress, J. Phys.: Condens. Matter 19, 236208

[12]. Julie J. Mohamed, Sabar D. Hutagalung, M. Fadzil Ain, Karim Deraman, Zainal A. Ahmad, (2007); Microstructure and dielectric properties of CaCu3Ti4O12 ceramic, Materials Letters 61, 1835–1838

[13]. W. Ren, Z. Yu, V.D. Krstic and B.K. Mukherjee, (2004); Structure and Properties of High Dielectric Constant CaCu3Ti4O12 Ceramics, IEEE.

[15]. A. Rumeau, P. Bidan, T. Lebey, L. Marchin, B. Barbier, S. Guillemet, (2006); Behavior modeling of a CaCu3Ti4O12 ceramic for capacitor applications, IEEE.