Solid State Science and Technology, Vol. 17, No 1 (2009) 1-11

ISSN 0128-7389

VOLTAMMETRIC STUDIES OF NANO ZIRCONIUM DIOXIDE/CARBON NANOTUBES/CHITOSAN-MODIFIED GLASSY CARBON ELECTRODES

 

Nor Amirah Mohd Maamor, Tan Wee Tee and Nor Azah Yusof.

Department of Chemistry, Faculty of Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia

 

ABSTRACT

Voltammetric studies of a sensitive electrochemical DNA sensor based on ZrO2 nanoparticles and multi-walled carbon nanotube (MWNTs) for DNA immobilization is described. Layer deposition technique was used to prepare nano ZrO2/MWNTs/chitosan-modified glassy carbon electrode (GCE) and oligonucleotides were immobilized to the GCE. The immobilization of DNA on the electrode was monitored by cyclic voltammetry (CV) analysis by measuring the change of peak currents using electroactive methylene blue (MB) as an indicator. Compared with previous DNA sensor with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotubes-based assay with its large surface area and good charge-transport characteristics increased DNA attachment quantity. Parameters used on this study including electrochemical characterization, scan rate study, pH optimization, and scanning electron microscope (SEM) as well as chronoamperometry (CA) and chronocoulometry (CC). The electrochemical reduction and oxidation of the redox couples of methylene blue (as a DNA indicator) can be recognized easily by the solid-phase voltammetry of microparticles. The cyclic voltammograms for three differently modified electrodes, nano ZrO2/chitosan, MWNTs/chitosan and nano ZrO2/MWNTs/chitosan, showed 2 major peaks responding to redox couple of methylene blue.

 

http://journal.masshp.net/wp-content/uploads/Journal/2009/Jilid%201/Nor%20Amirah%20Mohd%20Maamor%201-11.pdf

 

 

REFERENCES

[1]. A.M.C. Paquim, V.C. Diculescu, T.S. Oretskaya and A.M.O. Brett (2004), Biosensor Bioelectrone, 20, 933.

[2]. M.I. Pividori, A. Merkoci and S. Alegret (2000), Biosensor Bioelectrone, 15, 291.

[3]. F.H. Teh, H. Gong, X.D. Dong, X. Zeng, A.L.K. Tan, X.Yang and S.N. Tan

(2005), Analytical Chimica Acta 551, 23.

[4]. O.A. Loaiza, S. Campuzano, M. Pedrero and J.M. Pingarron (2007), Talanta,doi:10.1016/j.talanta.2007.04.059.

[5]. J. Li, Q. Liu, Y.J. Liu, S.C. Liu and S.Z. Yao (2005), Analytical Chimica Acta 533, 11.

[6]. W.T. Tan, A.M. Bond, S.W. Ngooi, E.B. Lim and J.K. Goh (2003), Analytical Chimica Acta 491, 181-191.

[7]. S. Ijima (1991), Nature 354, 56.

[8]. Q. Zhao, Z. Gan and Q. Zhuang (2002), Electroanalysis 14, 23.

[9]. M.L. Cohen (2001), Material Science Engineering C 15, 1.

[10]. R.H. Baughman, A. Zakhidov and W.A. de Heer (2002), Science 297, 787

[11]. Y.H. Yun et. al. (December 2007), Nanotube Electrodes and Biosensors, Volume 2, No. 6.

[12]. S. Banerjee, et. al. (2005), Adv. Mater 17, 17.

[13]. Y. Wang, et. al. (2005), Chem. Phys. Lett. 402, 96.

[14]. C. Klummpp, et. al. (2006), Biochim. Biophys. Acta, 1758, 404.

[15]. R.J. Chen, et. al. (2003), Proc. Natl. Acad. Sci. USA 100, 4984.

[16]. T. Ramanathan, et. al. (2005), Chem.. Mater 17, 1290.

[17]. Y.L. Zheng (2007), Electrochem. Commun. 9, 185.

[18]. C.S. Lee, et. al. (2004), Nano. Lett. 4, 1713.

[19]. D.A. Heller, et.al. (2006), Science 311, 508.

[20]. K.D. Dobson and A.J. McQuillan (1997), Langmuir 13, 3392.

[21]. M. Fang, D.M. Kaschak, A.C. Sutorik and T.E. Mallouk (1997), J. Am. Chem. Soc. 119 12184.

[22]. N. Zhu, A. Zhang, Q. Wang, P. He and Y. Fang (2004), Analytical Chimica Acta 510, 163-168.

[23]. A. Erdem, K. Kerman, B. Meric, U.S. Akarca and M. Ozsoz (2000), Anal. Chim. Acta 422, 139-149.

[24]. A. Erdem, D.O. Ariksoysal, H. Karadeniz, P. Kara, A. Sengonul, A.A. Sayiner and M. Ozsoz (2005), Electrochemistry Communications 7, 815-820.

[25]. O.A. Loaiza, S. Campuzano, M. Pedrero and J.M. Pingarron (2007), Talanta, doi:10.1016/j.talanta.2007.04.059.

[26]. F. Yan, A. Erdem, B. Meric, K.Kerman, M.Ozsoz and O.A. Sadik (2001), Electrochemistry Communications 3, 224-228.

[27]. Y. Yang, Z. Wang, M. Yang, J. Li, F. Zheng, G. Shen and R. Yu (2007), Analytica Chimica Acta 584, 268-274.

[28]. H. M. Nassef, A. Radi and C. O’Sullivan (2007), Analytical Chimica Acta 583, 182-189.

[29]. W.T. Tan, S.Y. Chan and C.K. Lee (2002), Malaysian Journal of Chemistry, Vol. 4, No. 1, 071-080.

[30]. A.J. Bard and L.R. Faulkner (1980), Electrochemical Methods, Wiley and Sons, New York.

[31]. S.B. Khoo and F. Chen (2002), Anal. Chem 74, 5734.

[32]. A.J. Bard and L.R. Faulkner (2001), Electrochemical Methods, Fundamentals and Applications, Wiley, New York.

[33]. J.B. Raoof, R. Ojani and S. Rashid-Nadimi (2004), Electrochim. Acta 49, 271.

[34]. S.M. Golabi and L. Irannejad (2005), Electroanalysis 17, 985.

[35]. Z. Galus (1994), Fundamentals of Electrochemical Analysis, Ellis Horwood, New York.