Solid State Science and Technology, Vol. 17, No 1 (2009) 132-139

ISSN 0128-7389



Srimala Sreekantan, Roshasnorlyza Hazan and Zainovia Lockman

School of Materials & Mineral Resources Engineering,

Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal,

Seberang Perai Selatan, Pulau Pinang, Malaysia



The formation of self-organized TiO2 nanotubes was investigated by anodizing titanium foils in electrochemical bath containing 1 M glycerol with 0.7 g NH4F. The bath consisted of 2 electrodes; titanium foil as a working electrode and platinum plate as a counter electrode. The pH of the bath was kept constant at pH 6 and potential applied on the electrode was varied from 5 V to 30 V in an interval 5V. This is done to investigate the effect of voltage on the nanotubes formation. It was found that the self-organized TiO nanotubes with different diameter size (20-80 nm) can be successfully established by simple altering the anodization voltage. For as-anodized sample, the self-organized TiO2 nanotubes have amorphous structure and annealing at 400°C of the nanotubes promotes formation of anatase and rutile phase. Photocatalytic activity of the self-organized TiO2 nanotube with various sizes was evaluated by measuring the degradation of methylene orange. The elaboration of this observation is described in detail in this paper.



[1]. N. Wang, X. Li, Y. Wang, X. Quan, G. Chen, (2008) Chemical Engineering Journal Article in Press

[2]. K.O. Awitor, S. Rafqah, G. Géranton, Y. Sibaud, P.R. Larson, R.S.P. Bokalawela, J.D. Jernigen, M.B. Johnson, (2008) Journal of Potochemistry and Photobiology A: Chemistry 199 250-254

[3]. J. Yu, X. Zhao, J. Du, W. Chen, (2000) Journal Sol-Gel Science and Technology 17 163-171

[4]. K. Kato, A. Tsuzuki, Y. Torii, H. Taoda, (1995) Journal of Materials Science 30 837-841

[5]. Y.S. Sohn, Y.R. Smith, M. Misra, V.R. Subramanian, (2008) Appied Catalysis B: Environmental 84 372-378

[6]. J. Yu, X. Zhao, Q. Zhao, (2000) Thin Solid Films 379 7-14

[7]. Q. Chai, L. Yang, Y. Yu, (2006) Thin Solid Films 515 1802-1806

[8]. U. Èernigoj, U.L. Štangar, P. Trebše, U.O. Krašovec, S. Gross, (2006) Thin Solid Films 495 327-332

[9]. B. Guo, Z. Liu, L. Hong, H. Jiang, J.Y. Lee (2005) Thin Solid Films 479 310-315

[10]. B. Guo, Z. Liu, L. Hong, H. Jiang (2005) Surface & Coating Technology 198 24-29

[11]. J.M. Macak and P. Schmuki, (2006) Electrochimica Acta 52 1258-1264

[12]. H.C. Liang, X.Z. Li, Journal of Hazardous Materials Article in Press

[13]. C.K. Jung, I.S. Bae, Y.H. Song, T.K. Kim, J. Vlcek, J. Musil, J.H. Boo, (2005) Surface & Coating Technology 200 534-538

[14]. S. Sreekantan, R. Hazan, Z. Lockman, Proceeding of 2nd International Conference & Exhibition on Composites Materials & Nano-structures, (2008) 65

[15]. D.J. Yang, H.G. Kim, S.J. Cho, W.Y. Choi, (2007) Materials Letters 62 775-779

[16]. V. Vega, M.A. Cerdeira, V.M. Prida, D. Alberts, N. Bordel, R. Pereiro, F. Mera, S. Carcía, M.H. Vélez, M. Vázquez, (2008) Journal of Non-Crystalline Solids 354 5233-5235

[17]. F.M. Bayoumi, B.G. Ateya, (2006) Electrochemistry Communications 8 38-44

[18]. J.M. Macak, L.V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, P. Schmuki, (2006) Journal Electroceramic 16 29-34

[19]. S.H. Kang, J.Y. Kim, H.S. Kim, Y.E. Sung, (2008) Journal of Industrial and Engineering Chemistry 14 52-59