Solid State Science and Technology, Vol. 17, No 1 (2009) 140-147

ISSN 0128-7389

Corresponding Author: aziraaziz@yahoo.com

140

EFFECT OF Au THICKNESS ON PREPARATION OF CARBON

NANOSTRUCTURE BY USING NANOSTRUCTURED ZnO AS A TEMPLATE

 

A.A. Azira1, Z. Khusaimi1, N.F.A. Zainal1, S.F. Nik1, T. Soga2,

S. Abdullah1, and M. Rusop1

 

1NANO-SciTech Center, Institute of Science, Universiti Teknologi MARA,

40450 Shah Alam, Selangor, Malaysia

2Nagoya Institute of Technology, Nagoya 466-8555, Showa-ku, Gokiso-cho, Japan

 

ABSTRACT

Different thickness of Au was prepared as a catalyst to deposit ZnO nanostructure on

Au-coated surfaces by sol-gel method. The ZnO nanostructure will be used as template

to deposit carbon nanostructure by using thermal chemical vapor deposition (TCVD)

method. The carbon material has been successfully grown by using ZnO nanostructure

material as template. Rod-like ZnO appeared with sphere-like carbonaceous material on

the surface of the template. The as-prepared material has been characterized with X-ray

diffraction (XRD), scanning electron microscopy (FESEM) and Fourier transmission

infrared (FTIR). The XRD peaks of the products were indexed to ZnO materials, but

exhibited different relative intensities for the (002) diffraction peak. ZnO play a role as

a template for the growth of the carbonaceous material and they can link ZnO particles

together as a complex fabrication. This discovery is useful for nano-electronic

applications.

 

http://journal.masshp.net/wp-content/uploads/Journal/2009/Jilid%201/A.A.%20Azira%20140-147.pdf

 

REFERENCES

[1]. S. Iijima (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58.

[2]. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al., (2001). Room-

Temperature Ultraviolet Nanowire Nanolasers. Science 292, 1897-1899

[3]. J.Y. Li, X.L. Chen, H. Li, M. He, Z.Y. Qiao (2001). Fabrication of zinc oxide

nanorods. J. Crystal Growth 233, 5-7.

[4]. Z.W. Pan, Z.R. Dai, Z.L. Wang (2001). Nanobelts of semiconducting oxides.

Science 291, 1947-1949.

[5]. J.J. Wu, S. Liu, C. Wu, K. Chen, L. Chen (2002). Heterostructures of ZnO-Zn

coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81, 1312-1315.

[6]. B.D. Yao, Y.F. Chan, N. Wang (2002). Formation of ZnO nanostructures by a

simple way of thermal evaporation. Appl. Phys. Lett. 81, 757-760.

[7]. K. Govender, D.S. Boyle, P. O’Brien, D. Binks, D. West, D. Coleman (2002).

Room-Temperature Lasing Observed from ZnO Nanocolumns Grown by

Aqueous Solution Deposition Adv. Mater. 14, 1221-1224.

[8]. S.M. Haile, D.W. Johnson, G.H. Wiseman, H.K. Bowen (2004). Aqueous

precipitation of spherical zinc-oxide powders for varistor applications. J. Am.

Ceram. Soc. 72, 2004-2008.

[9]. P. O’Brien, T. Saeed, J. Knowles (1996). Speciation and the nature of ZnO thin

films from chemical bath deposition. J. Mater. Chem. 6, 1135-1140.

[10]. N. Audebrand, J.P. Auffredic, D. Louer (1998). X-ray Diffraction Study of the

Early Stages of the Growth of Nanoscale Zinc Oxide Crystallites Obtained from

Thermal Decomposition of Four Precursors. General Concepts on Precursor-

Dependent Microstructural Properties. Chem. Mater. 10, 2450-2461.

[11]. C.-H. Lu, C.-H. Yeh (2000). Influence of hydrothermal conditions on the

morphology and particle size of zinc oxide powder. Ceram. Int. 26, 351-357.

[12]. S.-Y. Chu, T.-M. Yan, S.-L. Chen (2000). Characteristics of sol-gel synthesis of

ZnO-based powders. J. Mater. Sci. Lett. 19, 349-352.

[13]. Y.C. Wang, I.C. Leu, M.H. Hon (2002). Effect of colloid characteristics on the

fabrication of ZnO nanowire arrays by electrophoretic deposition. J. Mater.

Chem. 12, 2439-2444.

[14]. S. Chen, R. Song, J. Wang, Z. Zhao, Z. Jie, Y. Zhao, B. Quan, W. Huang, S. Liu

(2008). Improved performances in top-emitting organic light-emitting diodes

based on a semiconductor zinc oxide buffer layer. Journal of Luminescence

128, 1143-1147.

[15]. A.M.Taurino, M.Epifani, T.Toccoli, S.Iannotta, P.Siciliano (2003). Innovative

aspects in thin film technologies for nanostructured materials in gas sensor

devices. Thin Solid Films 436, 52-63.

[16]. X.H. Chen, C.S. Chen, Q. Chen, F.Q. Cheng (2002). Non-destructive

purification of multi-walled carbon nanotubes produced by catalyzed CVD.

Mater. Lett. 57, 734-738.