Solid State Science and Technology, Vol. 17, No 2 (2009) 123-132

ISSN 0128-7389

Corresponding Author: rbh@dfiz2.fs.utm.my

123

LUMINESCENCE PROPERTIES OF 30SrO-30MgO-40P2O5

DOPED WITH Dy2O3

Rosli Hussin1, Dayang Nur Fazliana Abdul Halim1, Muhammad Shawal Husin1, Sinin

Hamdan2 and Mohd Nor Md Yusof1

1Phosphor Research Group, Department of Physics, Faculty of Science,

Universiti Teknologi Malaysia, Skudai, 81310, Johor

2Department of Mechanical and Manufacturing System, Faculty of Engineering,

Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak

 

ABSTRACT

This paper reports on the luminescence properties of Dy3+ (1.0 mol%) doped 30SrO- 30MgO-40P2O5, which had been prepared by solid state reaction. The crystalline phases were identified using X-ray diffraction (XRD) and their luminescence properties were studied using excitation and emission spectra obtained from photoluminescence spectroscopy. The results of XRD patterns indicate that the prepared sample contain Mg2P4O12 and SrMg P2O7 crystalline phase. The excitation spectrum of 30SrO-30MgO- 40P2O5: Dy3+ consist many dominant broad bands’ center at ~280,310 and 400-600 nm. The broad band excitation spectrum associated with defects and vacancies of host material through two different crystalline phases present in host material. The other feature of sharp peaks is very similar and belongs to Dy3+ ions. The observed f-f transitions in the range of 417-475nm correspond to the transitions from 6H15/2 to 4K17/2 + 4M19/2, 21/2 + 4I13/2 + 4F7/2, 4G11/2, 4I15/2 and 4F9/2, in the range of 392nm to 6P3/2 + 6P5/2,  and in the range of 312-370nm to 4K15/2, 6P7/2 + 4M15/2 and 4I11/2 respectively. The sharp emission peaks like at 482,465, and 455 nm could be assigned to the transition of 4F9/2→6H15/2, 4I15/2→ 6H15/2 and 4G11/2→ 6H15/2 of Dy3+.respectively. Dy3+ has emissions due to the atomic energy levels of itself and emissions due to the acceptor levels of defect sites formed by Dy3+. In addition, the SrO-MgO-P2O5 is found a new self-active luminescent material.

 

http://journal.masshp.net/wp-content/uploads/Journal/2009/Jilid%202/Rosli%20Hussin%20123-132.pdf

 

REFERENCES

[1]. I.W. Lenggoro, B. Xia, H. Mizushima, K. Okuyama, N. Kijima, (2001), Mater.

Lett. 50, 92.

[2]. U. Rambabu, D.P. Amalnerkar, B.B. Kale, S. Buddhudu, (2001), Mater. Chem.

Phys. 70, 1.

[3]. R.Y. Wang, (2004), J. Lumin. 106 211.

[4]. U. Rambabu, S. Buddhudu, (2001), Opt. Mater. 17, 401.

[5]. J.S. Sun, Y.C. Huang, F.H. Lin, L.T. Chen, (2003), J. Biomed. Mater. Res. Part

A 64A (4) 616.

[6]. V.A. Pelova, L.S. Grigorov, (1997) J. Lumin. 72–74, 241.

[7]. P.I. Paulose, G. Jose, V. Thomas, et al., (2003) J. Phys. Chem. Solids 64, 841.

[8]. M. Nogami, T. Enomoto, T. Hayakawa, (2002), J. Lumin. 97, 147.

[9]. S.E. Paje, M.A. Garcia, M.A. Villegas, et al., (2001) Opt. Mater. 17, 459.

[10]. Y.P. Reddy, S. Buddhudu, N.S. Hussain, (2001) Mater. Res. Bull. 36, 1813.

[11]. Y. Lin, Z. Tang, Z. Zhang, J. Zhang, et al., (2001), Mater. Sci. Eng. B 86, 79.

[12]. C. Zhu, Y. Yang, G. Chen, et al., in: Proceedings of the Ninth International

Conference on Particle Physics, October 2005, Como, Italy.

[13]. H. Choi, Ch.H. Kim, Ch.H. Pyun, S.J. Kim, (1999), J. Lumin. 82, 25.

[14]. G. Blasse, B.C. Grabmaier, 1994, Luminescence Materials, Springer–Verlag,

Berlin

[15]. Q. Su, Z.W. Pei, J. Lin, F. Xue, (1995), J. Alloys Compds. 225, 103.

[16]. J.L. Sommerdijk, A. Bril, (1975), J. Electrochem. Soc. 122, 952.

[17]. Z. Pei, Q. Su, S. Li, (1991), J. Lumin. 50, 123.

[18]. Q. Su, J. Lin, B. Li, (1995), J. Alloys Compds. 225, 120.

[19]. U. Rambabu, S. Buddhudu, (2001), Opt. Mater. 17, 401.

[20]. R.C. Ropp, (1968), J. Electrochem. Soc. 115, 841.

[21]. J. Dexpert-Ghys, R. Mauricot, M.D. Faucher, (1996), J. Lumin. 69, 203.

[22]. X.Q. Su, B. Yan, H.H. Huang, (2005), J. Alloys Compds. 399, 251.

[23]. B. Yan, X.Q. Su, (2005), Mater. Sci. Eng. B 116, 196.

[24]. J. Wang, S.B. Wang, Q. Su, (2004), J. Solid State Chem. 177, 895.

[25]. J. Lin, D.U. Sanger, M. Mennig, et al., (2000), Thin Solid Films 360, 39.

[26]. J.C. Krupa, I. Gerard, P. Martin, (1992), J. Alloys Compd. 188, 77.

[27]. E. Cavalli, M. Bettinelli, A. Belletti, A. Speghini, (2002), J. Alloys Compd. 341,

107.

[28]. M. Yu, J. Lin, Z. Zhang, J. Fu, S. Wang, H.J. Zhang, Y.C. Ham, (2002) Chem.

Mater. 14, 2224.

[29]. X.Q. Zeng, G.Y. Hong, H.Q. You, X.Y. Wu, C.H. Kim, C.H. Pyun, B.Y. Yu,

H.S. Bae, C.H. Park, H. Kwon, (2001), Chinese J. Lumin. 22, 55.

[30]. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, (2002), Chem.

Mater. 14 2228.

[31]. C.S. Liu, Q. Zhang, N. Kioussis, (2003), Phys. Rev. B 68, 224.

[32]. L.E. Shea, R.K. Datta, J.J. Brown, Jr., (1994), J. Electrochem. Soc. 141, 1950.

[33]. T.K. Tran, W. Park, J.W. Tomm, B.K. Wagner, S.M. Jacobsen, C.J. Summers,

P.N. Yocom, S.K. McClelland, (1995), J. Appl. Phys. 78, 5691.

[34]. J.P. Bender, J.F. Wanger, J. Kissick, B.L. Clark, D.A. Keszler, (2002), J. Lumin.

99, 31.

[35]. F.Y. Chang, L. Pang, (1996), J. Appl. Phys. 79, 7191.