Solid State Science and Technology, Vol. 17, No 2 (2009) 197-207

ISSN 0128-7389

Corresponding Author: cgdighavkar@gmail.com

197

AMMONIA GAS SENSING PERFORMANCE OF Cr2O3-LOADED TiO2

THICK FILM RESISTORS

 

C.G. Dighavkar1, A.V. Patil1, S. J. Patil2 and R.Y. Borse2

1Department of Electronic Science, L.V.H.College,

Panchawati, Nasik, Maharashtra., India,

2 Thick film laboratory, Department of Electronic Science, M.S.G. College,

Malegaon Camp, Dist- Nasik , Maharashtra, India.

 

ABSTRACT

This work investigated the use of Cr2O3 loaded TiO2 thick films gas sensor. The titania

thick films were prepared by a standard screen printing technique. Pure TiO2 was

observed to be insensitive to NH3 gas. In order to check the NH3 gas sensitivity various

concentrations (1 wt. %, 3 wt. %, 5 wt. %, 7 wt. % and 10 wt. %) of Cr2O3 was added in

TiO2. The maximum sensitivity (88.23 %) was obtained for NH3 at of 5 wt. % Cr2O3

loaded TiO2 thick films at 250 0C. The sample was observed to be oxygen deficient.

Upon exposure to NH3 gas, the barrier height of TiO2-Cr2O3 intergranular regions

decreases markedly due to the chemical transformation of Cr2O3 into well conducting

chromic ammonium hydroxide leading to a drastic decrease in resistance. The crucial

gas response was found to NH3 gas at 250 0C and no cross response was observed to

other hazardous and polluting gases. Phase evaluation of screen printed thick films of

TiO2-Cr2O3 composite was examined by XRD technique. XRD showed polycrystalline

nature with anatase and rutile structure. SEM investigation revealed that the size of

particles ranged from 180 to 200 nm. The effect of loading of Cr2O3 concentration in

TiO2 thick films on the gas sensitivity, selectivity, response and recovery times of the

sensor in the presence of NH3 gas were studied and discussed.

 

http://journal.masshp.net/wp-content/uploads/Journal/2009/Jilid%202/C.G.%20Dighavkar%20197-207.pdf

 

REFERENCES

[1]. Colón, G., Maicu, M., Hidalgo, M.C., and Navio, J.A. (2006); Appl. Catal. B:

Environ. 67, 41.

[2]. Amezcua, J.C., Lizama, L., C., Salcedo, Puente, I., Dominguez, J.M., and

Klimova, T. (2005); Catal.Today. 107–108, 578.

[3]. Wawyzyniak, B., Waldemar, A., and B.Tryba. B. (2006); J. Photoenergy, 1.

[4]. Barborini, E, Bongiorno, G., Forleo, Francioso, A.L., Milani, P., Kholmanov,

I.N., Piseri, P., Siciliano, P., A.M.Taurino, and Vinaty, S. (2005); Sensors and

Actuators B, 22, pp111–112

[5]. Prabir, K.D., and de Lucia, M.F. (2006); Sensors Actuators B 115, 1.

[6]. Tompsett, G.A., Bowmaker, G.A., Cooney, R.P., Metson, J.B., Rodgers, K.A.,

and Seakins, J.M. (1985); J. Raman Spectroscopy 26, 57.

[7]. Choi, Y.J., Seeley, Z., Bandyopadhy, A., Bose, S., Sheikh, A.A., (2001);

Sensors and Actuators B: Chemical.124, 111-117.

[8]. Radecka, M., Zakrezwskka, K., Rekas, M. (1998); Sensors and Actuators B:

Chemical, 47,194-204.

[9]. K. Ihokura, and Watson, J. (1994), The Stannic Oxide Gas Sensor: Principles

and Applications (Boca Raton, FL: CRC Press).

[10]. Sharma, R.K., Bhatnagar, M.C., Sharma, G.L. (1997); Sensors and Actuators B:

Chemical, 45 209-215.

[11]. Li, Y., Wlodarski, W., Golatsis, K., Moslih, S.H., Cole, J., Russo, S.,

Rockelmann, N. (2000); Sensors and Actuators B, pp160-163.

[12]. Neri, G., Bonavita, A., Rizzo, G., Galvangno, S. (2004); J. Euro. Ceramic

Society, 24, 1435-1438.

[13]. Du, J., Wu, Y., Choy, K.L. (2006); Thin Solid Films, 497, 42-47.

[14]. Joseph, B., Gopalchandran, K.G., Manoj, P.K., Koshy, P., Vaidyan, V.K.

(1999); Bull.Mater.Sci.22, 921.

[15]. JaydevDayan, N., Sainkar, S.R., Karekar, R.N., Aiyer, R.C. (1998); Thin Solid

Films 325, 254

[16]. Krishnan, B., Nampoori, V.N. (2005); Bull. Mater.Sci. 28,239.

[17]. Guidi, V., Butturi, M.A., Carotta, M.C., Cavicchi, B., Ferroni, M., Malagu, C.,

Martinelli, G.,Vincenzi, D., Sacerdoti, M., Zen, M. (2002); Sensors and

Actuators B 84, 72–77.

[18]. Timers, B., Olthus, W., Berg, A.V. (2005); Sensors and Actuators B, 107, p 666.

[19]. Yamazoe, N. (2005); Sensors and Actuators, 108, p 2.

[20]. Jayaraman, V., Gnanansekara, K., Prabha, E., Ganansekaran, T., Periaswami, G.

(1999); Sensors and Actuators B55, pp 175-179.

[21]. Gao, L., Li, Q., Song, Z., Wang, J. (2000); Sensors and Actuators B 71,179-183.

[22]. Jain, G.H., Patil, L.A., Patil, P.P., Mulik, U.P., Patil, K.R. (2007);

Bull.Mater.Sci, Vol.30-1, pp 9-17.

[23]. Ruiza, A.M., Sakaib, G., Corneta, A., Shimanoeb, K., Morantea, J.R.,

Yamazoeb, N. (2003); Sensors and Actuators B 93, 509–518.

[24]. Akbar, S.A., Younkanan, I.B. (1997); J. Electrochem.Soc. 144, 1750-1753.

[25]. Sawage, N., Akabar, S.A., Datta, P.K., Ginwalla, A., Patton, B.R. (2001);

Sensors and Actuators B: Chemical 79, 17-27.

[26]. Sawage, N., Akabar, S.A., Datta, P.K. (2001); Sensors and Actuators B:

Chemical 72,239-248.

[27]. Maruska, H.P., A.K.Ghosh, A.K. (1978); Solar Energy, 20, 443-458.

[28]. Tank, H., Prasad, K., Sanjines, R., Levy, F.(1995); Sensors and Actuators B:

Chemical, 26-27, 71-75.

[29]. Kupriyanov, L.Y., (1996); Semiconductor Sensors in Physico-Chemical Studies,

Elsevier, Amsterdam.

[30]. Li, W., and Ni, C. (2004); Journal of Applied Physics, Vol.96-11, 6663-6669.

[31]. Arbiol, J. (2001); "Metal Additive Distribution in TiO2 and SnO2

Semiconductor Gas Sensor Nano-Structured Materials", Doctoral thesis,

Universitat de Barcelona, Department d’Electrónica.

[32]. Patil, D.R., Patil, L.A., Amalnerkar, P.P. (2007); Bulletin of material science,

Vol-30, No.553-559.