Solid State Science and Technology, Vol. 17, No 2 (2009) 226-237

ISSN 0128-7389

Corresponding Author: anuar@fsas.upm.edu.my

226

EFFECT OF DEPOSITION PERIOD AND BATH TEMPERATURE ON THE

PROPERTIES OF ELECTRODEPOSITED Cu4SnS4 FILMS

 

K. Anuar1, S.M. Ho1, W. T. Tan1, S. Atan1, Z. Kuang1,

M. J. Haron1 and N. Saravanan2

 

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia.

2Department of Bioscience and Chemistry, Faculty of Engineering and Science,

Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia.

 

ABSTRACT

Cu4SnS4 thin films were prepared by electrodeposition method in aqueous solutions.

The effect of various bath temperatures (25, 35, 45 C) and deposition periods (15, 30,

45 min) on growth of these films was reported. The structure and morphology characteristics of thin films of Cu4SnS4 grown on indium tin oxide glass substrates were investigated by X-ray diffraction and atomic force microscopy techniques. The optical properties were measured to determine the transition type and band gap value. The thin films produced were found to be polycrystalline with orthorhombic structure. The X-ray diffraction data showed that the most prominent peak at 2θ = 30.2 which belongs to (221) plane of Cu4SnS4. The atomic force microscopy image indicated that the films deposited at 25 C for 45 min exhibited smaller crystal size with uniformly distributed on indium tin oxide substrates. Photoelectrochemical test shows a p-type conduction mechanism. The bandgap was found to be 1.68 eV with direct transition.

 

http://journal.masshp.net/wp-content/uploads/Journal/2009/Jilid%202/K.%20Anuar%20226-237.pdf

 

REFERENCES

[1]. H. Khallaf, I.O. Oladeji and L. Chow (2008). Optimization of chemical bath

deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin

Solid Films, 516(18), 5967-5973.

[2]. S. Kumar, T.P. Sharma, M. Zulfequar and M. Husain (2003). Characterization

of vacuum evaporated PbS thin films. Physica B: Condensed Matter, 325, 8-16.

[3]. M. Soliman, A.B. Kashyout, M. Shabana and M. Elgamal (2001). Preparation

and characterization of thin films of electrodeposited CdTe semiconductors.

Renewable Energy, 23(3-4), 471-481.

[4]. C. Gautier, G. Breton, M. Nouaoura, M. Cambon, S. Charar and M. Averous

(1998). Sulfide films on PbSe thin layer grown by MBE. Thin Solid Films,

315(1-2), 118-122.

[5]. S. Armstrong, P.K. Datta and R.W. Miles (2002). Properties of zinc sulfur

selenide deposited using a close-spaced sublimation method. Thin Solid Films,

403-404, 126-129.

[6]. A. Timoumi, H. Bouzouita, M. Kanzari and B. Rezig (2005). Fabrication and

characterization of In2S3 thin films deposited by thermal evaporation technique.

Thin Solid Films, 480-481, 124-128.

[7]. I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja and A. Goossens

(2005). Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin

Solid Films, 480-481, 82-86.

[8]. A. Gupta, V. Parikh and A.D. Compaan (2006). High efficiency ultra-thin

sputtered CdTe solar cells. Solar Energy Materials and Solar Cells, 90(15),

2263-2271.

[9]. R.A. Berrigan, N. Maung, S.J.C. Irvine, D.J. Cole-Hamilton and D. Ellis (1998).

Thin films of CdTe/CdS grown by MOCVD for photovoltaics. Journal of

Crystal Growth, 195(1-4), 718-724.

[10]. A.M. Ali, T. Inokuma and S. Hasegawa (2006). Structural and Photoluminescence

properties of nanocrystalline silicon films deposited at low

temperature by plasma-enhanced chemical vapor deposition. Applied Surface

Science, 253(3), 1198-1204.

[11]. J. Nishino, S. Chatani, Y. Uotani and Y. Nosaka (1999). Electrodeposition

method for controlled formation of CdS films from aqueous solutions. Journal

of Electroanalytical Chemistry, 473(1), 217-222.

[12]. F. Gode, C. Gumus and M. Zor (2007). Investigations on the physical properties

of the polycrystalline ZnS thin films deposited by the chemical bath deposition

method. Journal of Crystal Growth, 299(1), 136-141.

[13]. C.M. Shen, X.G. Zhang and H.L. Li (2001). Effect of pH on the electrochemical

deposition of cadmium selenide nanocrystal films. Materials science and

Engineering, B84 (3), 265-270.

[14]. H. Saloniemi, M. Kemell, M. Ritala and M. Leskela (2001). Electrochemical

quartz crystal microbalance study on cyclic electrodeposition of PbS thin films.

Thin Solid Films, 386(1), 32-40.

[15]. S.Y. Cheng, G.N. Chen, Y.Q. Chen and C.C. Huang (2006). Effect of deposition potential and bath temperature on the electrodeposition of SnS film. Optical

Materials, 29(4), 439-444.

[16]. Z. Zainal, S. Nagalingam, A. Kassim, M. Z. Hussein and W.M.M. Yunus

(2004). Effects of annealing on the properties of SnSe films. Solar Energy

Materials & Solar Cells, 81(2), 261-268.

[17]. K. Anuar, Z. Zainal, M.Z. Hussein, N. Saravanan and I. Haslina (2002).

Cathodic electrodeposition of Cu2S thin film for solar energy conversion. Solar

Energy Materials & Solar Cells, 73(4), 351-365.

[18]. A.V. Kokate, M.R. Asabe, S.D. Delekar, L.V. Gavali, I.S. Mulla, P.P. Hankare

and B.K. Chougule (2006). Photoelectrochemical properties of

electrochemically deposited CdIn2S4 thin films. Journal of Physics and

Chemistry of Solids, 67(11), 2331-2336.

[19]. B. Subramanian, C. Sanjeeviraja and M. Jayachandran (2003). Materials

properties of electrodeposited SnS0.5Se0.5 films and characterization of

photoelectrochemical solar cells. Materials Research Bulletin, 38(5), 899-908.

[20]. R.P. Wijesundera and W. Siripala (2004). Preparation of CuInS2 thin films by

electrodeposition and sulphurisation for applications in solar cells. Solar Energy

Materials & Solar Cells, 81(2), 147-154.

[21]. C. Guillen, M.A. Martinez, J. Herrero and M.T. Gutierrez (1999). Chemical

studies of solar cell structures based on electrodeposited CuInSe2. Solar Energy

Materials & Solar Cells, 58(2), 219-224.

[22]. A. Pistone, A.S. Arico, P.L. Antonucci, D. Silvestro and V. Antonucci (1998).

Preparation and characterization of thin film ZnCuTe semiconductors. Solar

Energy Materials & Solar Cells, 53(3-4), 255-267.