Solid State Science and Technology, Vol. 17, No 2 (2009) 8-15

ISSN 0128-7389

Corresponding Author:






C.C. Yap1, M. Yahaya1, M.H. Jumali1 and M.M. Salleh2

1School of Applied Physics, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia

2Institute of Microengineering and Nanoelectronics (IMEN),

Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor, Malaysia



ZnO nanorod arrays have been grown on ITO glass substrates which were pre-coated

with ZnO nanoparticles by using a low cost and low temperature chemical solution

method. The structural and optical properties of ZnO nanorod arrays were investigated

using scanning electron microscopy (SEM) and photoluminescence (PL) techniques. It

was demonstrated that the introduction of annealed ZnO nanoparticles seed layer is

required for the formation of well-aligned ZnO nanorods. The ZnO nanorod arrays with

a diameter of 40-70 nm and a length of 200-300 nm were obtained. Besides, a strong

UV emission peaked at 386 nm in the PL spectrum revealed the good crystal quality of

ZnO nanorods.



[1]. D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen and D.S. Ginley (2006), Hybrid

photovoltaic devices of polymer and ZnO nanofiber composites. Thin Solid

Films 496, 26-29.

[2]. K. Takanezawa, K. Hirota, Q.S. Wei, K. Tajima and K. Hashimoto (2007),

Efficient charge collection with ZnO nanorod array in hybrid photovoltaic

devices. Journal of Physical Chemistry C 111, 7218-7223.

[3]. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo

and P. Yang (2001), Room-temperature ultraviolet nanowire nanolasers. Science

292, 1897-1899.

[4]. J.J. Wu and S.C. Liu (2002), Low-temperature growth of well-aligned ZnO

nanorods by chemical vapor deposition. Advanced Materials 14, 215-218.

[5]. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson and J.A. Switzer (2001),

Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold.

Chemistry of Materials 13, 508-512.

[6]. L. Vayssieres (2003), Growth of arrayed nanorods and nanowires of ZnO from

aqueous solutions. Advanced Materials 15, 464-466.

[7]. M. Guo, P. Diao and S.M. Cai (2005), Hydrothermal growth of well-aligned

ZnO nanorod arrays: Dependence of morphology and alignment ordering upon

preparing conditions. Journal of Solid State Chemistry 178, 1864-1873.

[8]. Z.T. Chen and L. Gao (2006), A facile route to ZnO nanorod arrays using wet

chemical method. Journal of Crystal Growth 293, 522-527.

[9]. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang and S.Q. Feng (2001), Ultravioletemitting

ZnO nanowires synthesized by a physical vapor deposition approach.

Applied Physics Letters 78, 407-409.

[10]. K. Vanheusden, C.H. Seager, W.L. Warren, T.D.R. Allant and J.A. Voigt

(1996), Correlation between photoluminescence and oxygen vacancies in ZnO

phosphors. Applied Physics Letters 68, 403-405.

[11]. N.O. Korsunska, L.V. Borkovska, B.M. Bulakh, L.Y. Khomenkova, V.I.

Kushnirenko and I.V. Markevich (2003), The influence of defect drift in

external electric field on green luminescence of ZnO single crystals. Journal of

Luminescence 102, 733-736.

[12]. Q. Li, V. Kumar, Y. Li, H. Zhang, T.J. Marks and R.P.H. Chang (2005),

Fabrication of ZnO nanorods and nanotubes in aqueous solutions. Chemistry of

Materials 17, 1001-1006.