INVERTED BULK HETEROJUNCTION ORGANIC SOLAR CELL WITH ZnO NANOROD ARRAYS

C.C. Yap1,\ast, M. Yahaya1, and M.M. Salleh2

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

ABSTRACT

Inverted bulk heterojunction organic solar cells based on a blend of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) as donor and (6,6)-Phenyl-C61 butyric acid methyl ester (PCBM) as acceptor with a structure of FTO/ZnO nanorods array/MEHPPV:PCBM/Au utilizing ZnO nanorods array as electron collecting layer and gold as a hole collecting electrode were investigated. The organic layer consisting of MEHPPV and PCBM was spin-coated on ZnO nanorod arrays. ZnO nanorod arrays were grown on fluorine-doped tin oxide (FTO) glass substrates which were pre-coated with ZnO nanoparticles using a low temperature chemical solution method. The device gave a short circuit current density of 0.18 mA/cm2 and an open circuit voltage of 0.38 V under illumination of a simulated AM 1.5 G sunlight at 100 mW/cm2. The power conversion efficiency of the solar cell was increased from 0.0015 \% to 0.016 \% through the introduction of ZnO nanorods arrays.

REFERENCES