Experimental Study towards Fabrication of Spray-Dried Photocatalytic Titanium Dioxide Films for Water Treatment


Ahmad Zaki Shaari*, Mat Tamizi Zainuddin, Shamsul Azrolsani Abdul Aziz Nazri, Shahrul Nizam Md. Salleh and Mohamad Zahid Abdul Malek


Advanced Materials Research Centre (AMREC), SIRIM Berhad

Lot 34, Jalan Hi-Tech 2/3, Kulim Hi- Tech Park, 09000 Kulim, Kedah, Malaysia


*Corresponding author: zaki@sirim.my




Doped TiO2 were milled and then processed into powder using a spray dryer. The powder was dried overnight and then heat treated (calcined) at different temperatures for 4 hours. Characterization of doped TiO2 was done using Field Emission Scanning Electron Microscope for size and morphology determination; X-Ray Diffractometer for crystallinity analysis; and FT Raman Spectrometer for Raman spectroscopic analysis. As calcination temperature went up, rutile phase increased with increased crystallite size in commercial (Degussa P25) TiO2 but it was not observed in the doped sample. The crystallite size and diffraction peak intensity of the doped (anatese) TiO2 increased as calcination temperature went up. Diffraction peaks for talc disappeared after milling (i.e grinding process). Two new RAMAN bands started to emerge at 1926 and 1498 cm starting at temperature 750C and showed significant peaks at 950C due to presence of talc or its constituents in the doped sample. This requires further study and investigation.


Keywords: Water Treatment; Photo Catalys; Titanium Dioxide; Spray Drying; Grinding Process;


Open Access >





[1].             Fujishima A., Hashimoto K., Watanabe T. Fundamentals and Applications Tokyo, (1999) 14

[2].             Chong M.N., Jin B., Chow C.W.K, Saint C. Water Research 44 (2010) 2997-3027

[3].             Thiruvenkatachari R., Vigneswaran S., Moon S. I. Korean J. Chem. Eng., 25 (1) (2008) 64-72

[4].             Antony Raj K. J., Viswanathan V. Indian Journal of Chemistry, 28(A) (2009) 1378-1382

[5].             Kim D. S., Han S. J., Kwak S.Y. Journal of Colloid and Interface Science, 316 (1) (2007) 85 91

[6].             Zhang Q., Gao L., Guo J. Applied Catalysis B, Env. 26 (2000) 207215

[7].             Nguyen TV., Jeffrey Wu C.S. Solar Energy Materials & Solar Cells, 92 (2008) 864872

[8].             Nagendrappa G. Resonance (2002) 64-77

[9].             Thompson T. L. and Yates J. T. Chemical Review 106 (2006) 4428

[10].           Han Y., Kim H. S., Kim H. Journal of Nanomaterials (2012) 1-10

[11].           Yang H., Du C. F. Applied Clay Science 31 (2006) 290-297

[12].           Tsai, S.J.; Cheng S. Cataysis Today 33 (1997) 227-237

[13].           Zhang J., Li M., Feng Z., Chen J., Li C. The Journal of Physical Chemistry B, 110 (2) (2006) 927935

[14].           Yariv S. Modern Approches in Wettability, (1992) 279-326

[15].           Wesolowski M.; Thermochimica Acta, (1984) 395-421