A Study of Thermal Properties of Perovskite Ceramic Materials via Molecular Dynamics Simulation

 

Wen Fong Goha*, Sohail Aziz Khana and Tiem Leong Yoona

 

School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia

 

*Corresponding author: christopher_gohwf@hotmail.com

 

Abstract

 

Molecular dynamics simulation has been performed on strontium titanate and barium zirconate ceramic materials to investigate their thermal-physical and thermal transport properties. The intricate interatomic potentials can be reduced to pairwise interactions, which consist of Ionic interaction, short-range repulsion, Van der Waals attraction and Morse covalent bonding. The potential parameters were parameterized to explain the thermal properties. Using these empirical potential parameters, the thermal expansion and thermal conductivity of the perovskite ceramic materials have been evaluated in the temperature range of 298 K – 2000 K. Comparison between the two ceramic materials suggests that strontium titanate is slightly more expansible and possess a higher thermal conductivity than barium zirconate. The simulation results show good agreement with the experimental findings.

 

Keyword: molecular dynamics simulation; strontium titanate; barium zirconate; thermal conductivity; thermal expansion;

 

http://journal.masshp.net/all%20journal/VOLUME%2021%20No%201%20&%202%202013/02%20Wen%20Fong%20Goha%2010-16.pdf

 

References

 

[1].             R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stφver (2000); J. Am. Ceram. Soc. 83, pp. 2023–2028.

[2].             P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen (2008); Solid State Ion. 179, pp. 2047–2058.

[3].             D.J. Cumming, J.A. Kilner, S. Skinner (2011); J. Mater. Chem. 21, pp. 5021–5026.

[4].             J. H. Shim, J. S. Park, J. An, T. M. Gur, S. Kang, F. B. Prinz  Chem. Mater. 21 (2009) 3290-3296

[5].             H. Muta, K. Kurosaki, S. Yamanaka J. Alloys Compd. 368 (2004) 22–24

[6].             H. Muta, K. Kurosaki, S. Yamanaka  J. Alloys Compd. 392 (2005) 306–309

[7].             W. F. Goh, T. L. Yoon, S. A. Khan  Comp. Mater. Sci. 60 (2012) 123-129

[8].             S. Plimpton J. Comput. Phys. 117 (1995) 1–19

[9].             R.W.G. Wyckoff (1964); Crystal structures, John Wiley and Sons, New York Sons, NewYork.

[10].           I. Charrier-Cougoulic, T. Pagnier, G. Lucazeau  J. Solid State Chem. 142 (1999) 220–227

[11].           E.N. Bunting, G.R. Shelton, A.S. Creamer  J. Am. Ceram. Soc. 30 (1947) 114–125

[12].           S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S. ichi Kobayashi, K. Kurosaki J. Alloys Compd. 359 (2003) 109–113

[13].           K. Jacob, Y. Waseda  Metall. Mater. Trans. B 26 (1995) 775–781

[14].           F. Mόller-Plathe  J. Chem. Phys. 106 (1997) 6082–6085

[15].           H. Ledbetter, M. Lei, S. Kim  Phase Trans. 23 (1990) 61–70

[16].           S. Yamanaka, K. Kurosaki, T. Maekawa, T. Matsuda, S. ichi Kobayashi, M. Uno  J. Nucl. Mater. 344 (2005) 61–66

[17].           R.O. Bell, G. Rupprecht  Phys. Rev. 129 (1963) 90–94

[18].           S. Yamanaka, T. Hamaguchi, T. Oyama, T. Matsuda, S. ichi Kobayashi, K. Kurosaki  J. Alloys Compd. 359 (2003) 1–4