Effect of boron carbide addition on the strength and physical properties of concrete

                                      

Fatin Nabilah Tajul Ariffin*1, Roszilah Hamid2, Yusof Abdullah3,

Sahrim Haji Ahmad1 and Yusri Helmi Muhammad1

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.

 

2Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM,

Bangi, Selangor, Malaysia.

 

3Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia.

 

*Corresponding author: roszilah@eng.ukm.my

 

Abstract

 

Concrete currently has become a conventional material in construction of nuclear reactor due to its properties such as safety, strength and economical in cost. Boron carbide (B4C) was used as additives in concrete are characterized as a good neutron absorber for nuclear reactor applications. The effect of B4C addition on physical and strength properties of concrete samples were investigated. The samples were prepared with three different weight percent (wt%) of B4C powder. The concrete slump test of fresh concrete has been done to investigate the workability of mixtures. Free B4C mixture shows the highest workability compare to 5 and 20 wt% B4C concrete mixture. The density of 0 wt% of B4C is the lowest compared to 5 and 20 wt%. However, after 28 days curing time, the compressive strength test of 20 wt% B4C shows the highest value compare to 5 and 0 wt% B4C concrete respectively. It is obvious that up to 20 wt% B4C can be added to concrete mixture and cause significant strength increased.

 

Keywords: strength; boron carbide; concrete; radiation shielding;

 

http://journal.masshp.net/all%20journal/VOLUME%2021%20No%201%20&%202%202013/03%20Fatin%20Nabilah%20Tajul%20Ariffin%2017-22.pdf

 

 

Refferences

 

[1].             El-Khayatt. A.M. Annals of Nuclear Energy 37 2010 991-995

[2].             Kase, K.R., Nelson,W.R., Fasso, A., Liu, J.C., Mao, X., Jenkins, T.M., Kleck, J.H., Health Physics 84 (2) 2003 180-187

[3].             Kharita, M.H., Yousef, S., AlNassar, M. Progress in Nuclear Energy 53 2011 207-211

[4].             Yousef, S., M. Al-Nassar, B. Naoom, S. Alhajal and M.H. Kharita, Prog. Nuclear Energy, 50 2008 22-26

[5].             Khanna, A., Bhatti, S.S., Singh, K.J., Thind, K.S. Nuclear instruments and methods in physics research B 114 1996 217-220

[6].             Okuno, Koichi. Radiation protection dosimetry. 115 (1-4) 2005 258-261

[7].             Mortazavi, S.M.J., Mosleh-Shirazi, M. A., Roshan-Shomal, P., Raadpey, N. and Baradaran-Ghahfarokhi, M. Radiation protection dosimetry. 142 (2-4) 2010 120-124

[8].             Yilmaz, E., Baltas, H., Kiris, E., Ustabas, I., Cevik, U., and El-Khayatt, A.M. Annals of Nuclear Energy 38 2011 2204-2212

[9].             El-Sayed. A.A., Ali, M.A.M., Ismail, M.R. Annals of Nuclear Energy 30 2003 391-403

[10].           Rıdvan Ünal, ,Ismail H. Sarpün, H. Ali Yalım , Ayhan Erol, Tuba Özdemir , Sabri Tuncel. Journal of Material Science. Materials Characterization 56 2006 241–244

[11].           Demir. D., Keles. G. Nuclear Instruments and Methods in Physics Research B 245 2006 501-504

[12].           Gebhardt. O., Gavillet. D. Journal of Nuclear Materials 279 2000 368-371

[13].           Rao, M.P.L.N., G.S. Gupta , P. Manjunath, S. Kumar , A.K. Suri , N. Krishnamurthy , C. Subramanian. Int. Journal of Refractory Metals & Hard Materials 27 2009 621–628

[14].           Teychenne. D.C., R.E. Franklin and H.C. Erntroy, 2010. Design of normal Concrete Mixes. Volume 331 of Building Research Establishment, 2nd Edn., Taylor and Francis, USA., ISBN: 9781860811722, Pages: 48

[15].           BSI, 1983b. Testing concrete, Part 108: Method for making test cubes from fresh concrete. British Standards Institution, London, UK., ISBN: 058013329X

[16].           BSI, 1983c. Testing concrete, Part 112: Methods of accelerated curing of test cubes. British Standards Institution, London, UK., ISBN: 0580133338

[17].           BSI, 1983a. Testing concrete, Part 102: Method for determination of slump. British Standards Institution, London, UK., ISBN: 058011922X

[18].           BSI, 1983d. Testing concrete, Part 114: Method for determination of density of hardened concrete. British Standards Institution, London, UK., ISBN-13: 9780580129483

[19].           BSI, 1983e. Testing concrete, Part 116: Method for determination of compressive strength of concrete cubes. British Standards Institution, London, UK., ISBN: 0580129500

[20].           Ariffin, F. N. T., Abdullah, Y., Shamsudin, R., Hamid, R., Ahmad, S. H. Journal of Applied Sciences 11 (22) 2011 3738-3743

[21].           Kharita, M.H., Yousef, S., AlNassar, M. Progress in Nuclear Energy 51 2009 388-392