EFFECT OF NANO-SIZE SnO2 ADDITION ON (Bi,Pb)-Sr-Ca-Cu-O SUPERCONDUCTOR

 

A.    Agail and R. Abd-Shukor

 

School of Applied Physics, Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor, Malaysia

 

Corresponding author: ras@ukm.my

 

ABSTRACT

 

In this study the influence of nano-SnO2 particles addition on the critical current density (JC) in Bi1.6Pb0.4Sr2Ca2Cu3SnxO10 superconductor ceramic with x ranging from 0 to 0.05 was investigated. The samples were prepared using the co-precipitation technique with sintering time of 48 h at 850ºC. The characterizations were carried out using DC resistivity measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The critical current density, JC and the transition temperature, Tc-onset for sample with 0.02 wt% were found to be the highest with a maximum JC 1212 mA/cm2 and a maximum TC-onset 112 K.  XRD and SEM analysis indicated that nano-SnO up to 0.02% wt  enhance the formation of low-TC (Bi-2212) phase fraction.

 

Keywords: Nano-SnO; Bi1.6Pb0.4Sr2Ca2Cu3SnxO10

 

 

REFERENCES

 

[1].          H. Maeda, Y. Tanaka, M. Fukotomi and T. Asano, Jpn. J. Appl. Phys, 27, 209-210 (1988).

[2].          J. M. Tarascon, Y. LePage, L. H. Greene, B. G. Bagley, P. Barboux, D. M. Hwang, G. W. Hull, W. R. Makinnon and M. Giroud,  Phys. Rev. B 38, 2504-2508 (1988).

[3].          K. Kuniyuki, K. Satoshi and N. Seiichiro, Jpn. J. Appl. Phys. 29, 53-56  (1990).

[4].          S. X.  Dou, H. K. Liu, J. Wang, M. H. Apperley, C. C. Sorrell, S. J. Guo, B. Loberg and K. E. Easterling, Physica C 172, 63-70 (1990).

[5].          T. Sakai, H. Utsunomiya, Y. Saito, T. Hanamachi and M. Shinkawa, Physica C 277, 189-195 (1997).

[6].          Z. Jia, Y, H. Tang, Z. Q. Yang, Y. T. Xing, Y. Z. Wang  and G. W. Qiao, Physica C 337, 130-132 (2000).    

[7].          T. Haugan, W. Wong-Ng, L.P. Cook, H. J. Brown, L. Swartzendruber, D.T. Shaw, Physica C 335, 129-133 (2000).

[8].          Y. Zaho, C.H. Cheng, J.S. Wang, Supercond. Sci. Technol. 18, 43-46 (2005).

[9].          A. Mellekh, M. Zouaoui, F. B. Azzouz, M. Annabi, M. B. Salem, Solid State       Commun. 140, 318-323 (2006).

[10].         F. B. Azzouz, M. Zouaoui, A. Mellekh, M. Annabi, G. Van Tendeloo and M. B. Salem, Physica C 455, 19-24 (2007).

[11].         B. Zhao, X. Wan, W. Song, Y. Sun and J. Du, Physica C 337, 138-144 (2000).

[12].         E. Guilmeau, B. Andrzejewski, and J. G. Noudem, Physica C 387, 382-390 (2003).

[13].         M. Zouaoui, A. Ghattas, M. Annabi, F. B. Azzouz and M. B. Salem, Supercond. Sci. Technol. 21, 125005 (2008).

[14].         K. T. Lau and R. Abd-Shukor, J. Appl. Phys. 99, 123904 (2006).

[15].         M. Annabi, A. m’chirgui, F. B. Azzouz, M. Zouaoui and M. B. Salem, Physica C 405, 25-33 (2004).

[16].         R. K. Nkum and W. R. Datars, Superconductor Science and Technology 8, 822-826 (1995).