SYNTHESIS AND CHARACTERIZATION OF Barium-Hexaferrite NANOPARTICLES FOR MICROWAVE ABSORPTION

 

M.I. Fadzidah1, M.Hashim1,2, I. Ismayadi1, I.R. Idza2, A.R. Norailiana2, N. Rodziah2, A.N. Hapishah, M.S.E. Shafie1, GH. Bahmanrokh2, M. Masni2, M. Masoudi2

 

1Institute of Advanced Technology (ITMA), Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia.

 

2Department of Physics, Faculty of Science, Universiti Putra Malaysia,

43400 UPM Serdang, Selangor, Malaysia.

 

Corresponding author: fadzidahmohdidris@gmail.com.my   

 

 

ABSTRACT

 

Prior to its use for microwave absorption, a hard ferrite was synthesized and characterized. A mixture of iron oxide (Fe2O3) and barium carbonate (BaCO3) was milled using the mechanical alloying technique and sintered at a temperature of 900ºC for 10 hours to form barium hexaferrite (BaFe12O19). X-ray diffractometry (XRD), vibrating sample magnetometry (VSM) and scanning transmission electron microscopy (STEM) were used to investigate the crystalline phase formation, the material’s magnetic hysteresis-loop properties and particle size respectively. From the XRD results it is shown that at 900ºC the full phase of barium hexaferrite was formed. The VSM result shows that at a temperature as low as 900ºC, the saturation magnetization can achieve a value as high as 53.5 emu/g and the sample possesses a coercivity as high as 1071.9 Oe. The STEM result shows that the particle size is 300-400 nm. The high magnetization and coercivity values are good for large microwave absorption losses. Barium hexaferrite were mixed with magnetite to form composite. A suitable absorber giving high losses was formed to contain 15 wt% magnetite.

 

Keywords: mechanical alloying; barium hexaferrite; X-ray phase analysis; VSM; STEM.

 

 

References

 

[1].             D. Lisjak, V. B. Bregar, A. Znidarsic, M. Drofenik, Journal of Optoelectronics and Advanced Materials 8, (2006) 60-65.

[2].             Sukhleen Bindra Narang et al., Journal of Ceramic Processing Research 7 (2006) 113-116.

[3].             V. Babu and P. Padaikathan. Journal of Magnetism and Magnetic Materials 241  (2002) 85-88.

[4].             G. P. Rodrigue. IEEE Trans. Microwave Theory Tech. MTT-11, 351(1963)

[5].             M.R. Meshram et al., Bull. Mater. Sci. 271 (2004) 207-214.

[6].             G. Benito et al., Journal of Magnetism and Magnetic Materials 234 (2001) 65–72.

[7].             H.Z. Wang et. al,. Journal of Alloys and Compounds 504 (2010) 70-75.

[8].             J. Qiu and M. Gu  Journal of Alloys and Compounds 415 (2006) 209–212.

[9].             Huseyin S.. Journal of Magnetism and Magnetic Materials. 321 (2009) 2717-2722.

[10].           J.Ding et. al. Journal of Magnetism and Magnetic Materials 150 (1995) 417-420

[11].           G. Shen et. al.,. Materials Science-Poland, 28, No. 1. (2010)

[12].           Daliya S. Mathew and Ruey-Shin Juang. Chemical Engineering Journal, 129 (2007) 51-65.

[13].           Jianxun Q. et. al.,. Powder Technology 154 (2005) 116-119.

[14].           J. Ding et. al.,. Journal of Alloys and Compounds 281 (1998) 32-36.

[15].           H. Kojima, Ferromagnetic Materials, E. P. Wohlfarth (ed.) Vol. 3, p.305 (1982).

[16].           X. Liu et al. Journal of Magnetism and Magnetic Materials 184 (1998) 344-354

[17].           L. Rezlescu et. al,. J. Magnetis Magnetism materials, 193 (1999) 288.

[18].           K. Vinoy and R. Jha, Radar Absorbing Material, Kluwer Academic, Boston, 1996.