Effect of Germanium concentration on the lattice Thermal Conductivity for SiGe Alloy Nanowires

 

Hawkar Taher Taha

 

Department of Physics, College of Science, Salahaddin University- Erbil, Krg, Iraq

 

Corresponding author: hawkarkoya@yahoo.com

 

ABSTRACT

 

The thermal conductivities of Si1−xGex nanowires (NWs) synthesized with Ge concentrations of 0.0%, 0.4%, 4%, and 9% and different diameters were measured from 0 to 450 K using Debye-Callaway model modified to include both longitudinal and transverse phonon modes explicitly has been developed to describe the lattice thermal conductivity for SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. The model uses nanowires boundary, defects and umklapp and normal phonon-scattering parameters that scaled in a consistent manner with Debye temperature and phonon velocity from their related melting point. The results indicated that the weaker diameter dependence of the thermal conductivity recently observed in Si1−xGex nanowires (x<0.1), as compared to pure Si nanowires. The calculations present in the full range of alloy concentrations, (0≤x≤1), which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.

 

Keywords: Lattice thermal conductivity; Debye-Callaway model; Si1-xGex alloys

 

REFERENCES

 

[1].                   A. Balandin and K. L. Wang, Phys. Rev. B 58, (1998) 1544.

[2].                   J. Zou and A. Balandin, J. Appl. Phys. 89, (2001) 2932.

[3].                   N. Mingo, Phys. Rev. B 68, (2003)113308.

[4].                   L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 16631 (1993).

[5].                   P.K. Schelling, L.Shi, and K.E. Goodson, Materials Today, 8, (2005) 30.

[6].                   G. S. Nolas, J. Sharp, and H.J. Goldsmith, Thermoelectrics, Springer, Berlin  

(2001).

[7].                   Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Appl. Phys. Lett. 83,  (2003) 2934.

[8].                   Li D.Y, Wu Y, Fan R, Yang P.D, Majumdar A. Appl. Phys. Lett. 83, (2003) 3186.

[9].                   Hochbaum A.I, Chen R, Delgado R.D, Liang W, Garnett E.C, Najarian M, Majumdar A, Yang P. Nature 451, (2008) 163.

[10].                 Zhou J, Jin C, Seol J.H, Li X, Shi L. Appl. Phys. Lett 87, (2005) 133109.

[11].                 Guthy C, Nam C, Fischer J.E. J. Appl. Phys. 103, (2008) 064319.

[12].                 You C. L Nano Lett.12, (2012) 2918.

[13].                 Shi L, Hao Q, Choongho Y, Mingo N, Xiangyang K. Appl. Phys. Lett. 84, (2004) 2638.

[14].                 Wingert M.C, Chen Z.C.Y, Dechaumphai E, Moon J, Kim J, Xiang J, Chen R. Nano Lett, 11, (2011) 550.

[15].                 G.A. Slack, R.A. Tanzilli, R.O. Pohl, and J.W. Vandersande, J. Phys. Chem. Solids 48, (1987) 641.

[16].                 D.T. Morelli, T.M. Hartnett, and C.J. Robinson, Appl. Phys. Lett. 59, (1992) 2112.

[17].                 T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.H. Wei, P.K. Kou, R.L. Thomas, and R.W. Pryor, Phys. Rev. B 42, (1990) 1104.

[18].                 Lanhua Wei, P.K. Kuo, R.L. Thomas, T.R. Anthony, and W.F. Banholzer, Phys. Rev. Lett. 70, (1993) 3764.

[19].                 D.G. Onn, A. Witek, Y.Z. Qiu, T.R. Anthony, and W.F. Banholzer, Phys. Rev. Lett. 68, (1992) 2806.

[20].                 J.R. Olson, R.O. Pohl, J.W. Vandersande, A. Zoltan, T.R. Anthony, and W.F. Banholzer, Phys. Rev. B 47, (1993) 14850.

[21].                 M. Asen-Palmer, K. Bartkowski, E. Gmelin, M. Cardona, A.P. Zhernov, A.V. Inyushkin, A. Taldenkov, V.I. Ozhogin, K.M. Itoh, and E.E. Haller, Phys. Rev. B 56, (1997) 9431.

[22].                 D. G. Cahill and R. O. Pohl, Ann. Rev. Phys. Chem. 39, (1988) 93.

[23].                 A. F. Joffe, Can. J. Phys. 34, (1956) 1342.

[24].                 B. Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes, Physical Review 125, (1962) 44.

[25].                 C. J. Glassbrenner and G. A. Slack, Physical Review 134, (1964) A1058.

[26].                 B. Abeles, Physical Review 131, (1963) 1906.

[27].                 J. P. Dismukes, L. Ekstrom, E. F. Steigmeier, I. Kudman, and D. S. Beers, Journal of Applied Physics 35, (1964) 2899-2907.

[28].                 R. J. LaBotz, D. R. Mason, and D. F. O'Kane, Journal of The Electrochemical Society 110, (1963)127-134.

[29].                 Kim H, Kim I, Choi H, Kim W. Appl. Phys. Lett. 96, (2010) 233106.

[30].                 Kim H, Park Y, Kim I, Kim J, Choi H, Kim W. Appl. Phys. A; 104, (2011) 23.

[31].                 R. Berman, "Thermal Conduction in Solid", Clarendon Press, Oxford, (1976).

[32].                 M. A. Omar, "Elementary Solid State Physics", Addison-Wesley Publishing Company, Lowell, Massachusetts,  (1974).

[33].                 J. Callaway, Phys. Rev., 113, (1959) 1046.

[34].                 G. A. Slack and S. Galginaitis, Phys. Rev. 133, (1964)A253.

[35].                 Zhao Wang and Natalio Mingo, Appl. Phys. Lett. 97, (2010) 101903.

[36].                 P.G. Klemens, Proc. Roy. Soc. (London), A208, 108 (1951); Proc. Phys. Soc. (London), A68, (1958)1113.

[37].                 L. H. Liang and Li. Baowen, Phys. Rev. B 73, (2006) 153303.

[38].                 F. A. Lindemann, Z. Phys. 11, (1910) 609.

[39].                 R.W. Keyes, Phys. Rev. 122, (1961) 1171.

[40].                 F. G. Shi, J. Mater. Res. 9, (1994)1307;

[41].                 Z. Zhang, M. Zhao and Q. Jiang, Semicond. Sci. Technol. 16, (2001) L33-L35.

[42].                 Hohyun Lee, Daryoosh Vashaee, D. Z. Wang, Mildred S. Dresselhaus, Z. F. Ren, and Gang Chen, Appl. Phys. 107, (2010) 094308.

[43].                 Paul D. J. Microelectronics Advanced Materials 11 (3), (1999) 191.

[44].                 M. G. Holland, Physical Review 132,  (1963) 2461.