SYNTHESES TiO2 NANOCOMPOSITE USING Evaporation-Induced Self-Assembly (EISA) METHOD FOR DSSC

 

M.Z.Razali1, H.Abdullah1*, S.A.Zainal1, S.Shaari1, 2

 

1Department of Electrical, Electronic & System, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MALAYSIA

 

2Institute of Microengineering and Nanoelectronics (IMEN),

Universiti Kebangsaan Malaysia,

43600 Bangi, Selangor, MALAYSIA

 

Corresponding author: huda@vlsi.eng.ukm.my

 

ABSTRACT

 

The objective of this study is to synthesize mesoporous titania using the Evaporation-Induced Self-Assembly (EISA) method. The samples were annealled at 400C for 4 hours. Then the titania was pasted onto FTO glass and immersed in dye N719 for several hours. TiO2 using EISA method and time immersing in the dye were prepared for comparison. Titanium Tetra Isopropoxide (Ti(OiPr4)) was chosen as a precursor and Trymethil Ammonium Bromide (CTAB) as a surfactant. From SEM results, TiO2 EISA produced small TiO2 particles with high porosity and compact particles. From XRD spectrum, anatase phase had been produced by using this EISA method. Percentage efficiency for TiO2 EISA that being immersed in the dye for 12 hours, and 6 hours is about 2.81% and 2.24%, respectively. The results show that TiO2 gave a good result in terms of efficiency and will lead to a better DSSC system.

 

Keywords: EISA method;, titania; FTO glass; N719 dye; DSSC

 

 

 

 

REFERENCES

 

[1].                M. Gratzel, Nature 414 (2001) 338.

[2].                H. Pettersson, T. Gruszecki, R. Bernhard, L. Haeggman, M. Gorlov, G. Boschloo, T. Edvinsson, L. Kloo, A. Hagfeldt, Prog. Photovoltaics 15 (2007) 113.

[3].                E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, Chem. Commun. (2002) 1464.

[4].                E. Palomares, J.N. Clifford, S.A. Haque, T. Lutz, J.R. Durrant, J. Am. Chem. Soc. 125 (2003) 475.

[5].                I. Kartini, D. Menzies, D. Blake, J.C.D. da Costa, P. Meredith, J.D. Riches, G.Q. Lu, J. Mater. Chem. 14 (2004) 2917.

[6].                K. Kalyanasundaram, M. Gratzel, Coord. Chem. Rev. 177 (1998) 347.

[7].                P.J. Cameron, L.M. Peter, J. Phys. Chem. B 109 (2005) 7392.

[8].                Imhof, A.; Pine, D. J. Nature 1997, 389, 948.

[9].                Alexandridis, P.; Athanassiou, L. V.; Hatton, T. A. Langmuir, 11, (1995), 2442.

[10].              Jing, L.; Sun, X.; Shang, J.; Cai, W.; Xu, Z.; Du, Y.; Fu, H. Sol. Energy Mater. Sol. Cells 2003, 79, 133.

[11].              Marple, B. R.; Lima, R. S.; Li, H.; Khor, K. A. Key Eng. Mater. 309 (2006), 739.

[12].              Montoya, I. A.; Viveros, T.; Dominguez, J. M.; Canales, L. A.; Shifter I. Catal. Letters 15, (1992), 207.

[13].              Ding, X.-Z.; Qi, Z.-Z.; He, Y. Z. J. Mater. Sci. Lett., 14, (1995) 21.

[14].              Ohtani, B.; Nishimoto, S.-I. J. Phys. Chem. 97 (1993), 920.

[15].              Ohtani, B.; Zhang, S.-W.; Nishimoto, S.-I.; Kagiya, T. J. Photochem. Photobiol. A Chem. 64 (1992) 223.