Defective VOPcPhO nanotubes for improved optical properties

 

Shayyidatul Athirah Abdul Manaf1, Nor Asmaliza Bakar1, Rosdiyana Samad2, Azzuliani Supangat1,3

 

1 Department of Physics, Faculty of Science,

University of Malaya, Kuala Lumpur 50603, Malaysia

 

2 Faculty of Electrical and Electronic Engineering,

University of Malaysia Pahang, Pekan, Pahang 26600, Malaysia

 

3 Low Dimensional Materials Research Centre, Faculty of Science,

University of Malaya, Kuala Lumpur 50603, Malaysia

 

Corresponding author: azzuliani@um.edu.my

 

Abstract

 

In this study, the synthesis of defect-free and defective vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPcPhO) nanotubes via templating method is reported. VOPcPhO nanotubes are successfully grown by immersing the porous alumina template into 5 and 15 mg/ml of solution concentration for 24 hours and annealed at 150 °C. Changes in morphological and optical properties are observed as the solution concentration is varied. Interestingly, defective VOPcPhO nanotubes that obtained from the higher solution concentration of 15 mg/ml recorded enhancement in optical properties. Defects by means of voids and circular-shaped holes along the nanotubes have caused to the reduction of nanotubes’ diameter. Defective nanotubes that contribute to improve optical properties have been postulated to have low band-gap energy and enhanced photoluminescence quenching.

    

Keywords: defect; nanotubes; optical properties

 

 

References

 

       [1].       Kamarundzaman, A., et al., Materials Letters, 111 13-16 (2013)

       [2].       Supangat, A., et al., Materials Letters, 118 103-106 (2014)

       [3].       Poklonski, N.A., et al., Technical Physics Letters, 27 (3) 180-182 (2001)

       [4].       Sanusi, K., E.K. Amuhaya, and T. Nyokong, The Journal of Physical Chemistry C, 2014.

       [5].       Cepak, V.M. and C.R. Martin, Chem. Mater., 11 1363-1367 (1999)

       [6].       Demirel, G., N. Malvadkar, and M.C. Demirel, Thin Solid Films, 518 4252-4255 (2010

       [7].       Feng, X. and Z. Jin, Macromolecules, 42(3) 569-572 (2009)

       [8].       Haberkorn, N., et al., Macromolecular Chemistry and Physics, 212(19) 2142-2150 (2011)

       [9].       Aziz, F., et al., Molecular Crystals and Liquid Crystals, 566(1) 22-32 (2012)

     [10].     Hassan, Q.M.A., Journal of Natural Sciences Research, 4(5) 97-108 (2014)

     [11].     Singh, D.K., P.K. Giri, and P.K. Iyer, The Journal of Physical Chemistry C, 115 24067-24072 (2011)

     [12].     Harrah, D.M. and A.K. Swan, The Role of Length and Defects on Optical Quantum Efficiency and Exciton Decay Dynamics in Single-Walled Carbon Nanotubes ACS Nano, 2010.

     [13].     Jiuxu, S., et al., Journal of Semiconductors, 34(2) 1-5 (2013)

     [14].     Hu, S., et al., J. Phys. Chem. C, 112 8424-8428 (2008)

     [15].     Jalili, S., M. Akhavan, and J. Schofield, The Journal of Physical Chemistry C, 116 13225-13230 (2012)

     [16].     Szybowicz, M., et al., Journal of Materials Science, 46 6589-6595 (2011)

     [17].     Aziz, F., et al., Physica E, 44 1815-1819 (2012)