EFFECTS OF MILLING TIME ON MORPHOLOGY AND ELECTROCHEMICAL PERFORMANCE OF Li4Ti5O12/C COMPOSITE ANODE

 

M. I. Ishak, A. Mokhtar, M. A. Sulaiman, A. Mat, K. S Sulaiman,

M. F. Rosle and S. M. Hasanaly

 

Energy Materials Section, Advanced Materials Research Centre (AMREC),

SIRIM Berhad, Lot 34, Jalan Hi-Tech 2/3, Kulim Hi-Tech Park,

09000 Kulim, Kedah, MALAYSIA.

 

Abstract

The Li4Ti5O12/C anode material was prepared via high energy ball milling method for 2, 4, 6 and 8 hours and subsequently heat treated at 850O C for 12 hours in N2 atmosphere. The structure and morphology of the prepared Li4Ti5O12/C composite was characterized by means of X-Ray Diffractometry (XRD) and Field-Emission Scanning Electron Microscope (FESEM). The morphological changes of the Li4Ti5O12/C composite resulted from different milling time strongly influences the electrochemical performance of this anode material. The Li4Ti5O12/C composite which was milled for 2 hours delivered the best electrochemical performance with a discharge capacity of 154 mAhg-1 when cycled between 1.0 and 3.0 V vs. Li/Li+. Particulate morphology observed from FESEM images showed that samples that were milled for 8 hours have increased agglomeration compared to that milled for 2, 4 and 6 hours. The larger surface area for reaction with Li+ improves the discharge capacity of the Li4Ti5O12/C anode material.

 

Keywords: Li4Ti5O12/C; high energy ball milling; morphology; anode

 

References

 

[1].                A. Guerfi, P. Charest, K. Kinoshita,b, M. Perrier, K. Zaghib, J. Power Sources 126 163-168 (2004)

[2].                T. Ohzuku, A. Ueda, N. Yamamoto, J. Electrochem. Soc. 142 1431 (1995)

[3].                L. Zhao, Y.S. Hu,  H. Li, Z.X. Wang, L.Q. Chen, Adv.  Mater. 23 1385 (2011)

[4].                J.Z. Chen, L. Yang, S.H.  Fang, S. Hirano, K. Tachibana, J. Power Sources 200  59 (2012)

[5].                Y.S. Lin,  J.G. Duh, J. Power Sources 196 10698 (2011)

[6].                K. Amine, I. Belharouak, Z.H.  Chen, T. Tran, H.  Yumoto, N.  Ota, S.T. Myung, Y.K. Sun, Adv.  Mater. 22  3052 (2010)

[7].                J. Lu, C.Y. Nan, Q. Peng, Y.D. Li, J. Power Sources 202 246 (2012)

[8].                S.L.  Chou,  J.Z.  Wang,  H.K.   Liu,   S.X.  Dou,  J.  Phys.  Chem. C 115  16220 (2011)

[9].                H.G.  Jung, S.T.  Myung, C.S.  Yoon, S.B.  Son, K.H.  Oh,   K.  Amine, B.  Scrosati, Y.K. Sun, Energy Environ. Sci.  4 1345 (2011)

[10].              K.M. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources 26 397 (1989)

[11].              C. Lai, Z. Z.  Wu, Y. X. Zhu, Q. D.  Wu, L.  Li, C. Wang. J. Power Sources 226  71-74 (2013)

[12].              M. Michalska, M. Krajewski, D. Ziolkowskac, B. Hamankiewicz, M.  Andrzejczuk, L. Lipinska, K. P. Korona, A. Czerwinski, J. Powder Technology 266 372-377 (2014)

[13].              K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, Journal of Power Sources 81-82  300-305 (1999)

[14].              V. Aravindan, K. Karthikeyan, K. S.  Kang, W. S. Yoon, W. S. Kim, Y. S. Lee. J.  Materials Chemistry 21  2470-2475 (2011)

[15].              J. X. G. Wang, M. Wen, R. Cai, R. Ran, Z. Shao. J. Solid State Ionics 179 946-950 (2008)