The Electrochemical Performance of Sugar-Derived Ordered Mesoporous Carbon Electrode

 

Nur Izzatie Hannah Razman1,2, Salasiah Endud1,,

Zainab Ramli1 and Izan Izwan Misnon3

 

1Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia,

81310 UTM Johor Bahru, Johor, Malaysia

 

2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

3Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang

 

Corresponding author: izzatihanna@yahoo.com.my

 

Abstract

 

Sugar-derived ordered mesoporous carbon, OMC was prepared by infiltration of sugar into the porosity of SBA-15 template followed by carbonization in an inert ambience. The structure, porosity and surface characteristics of the OMC were evaluated using XRD, TEM and nitrogen physisorption analysis. The OMC obtained as replica of SBA-15 template possesses high BET surface area (~900 m2g1), pore size distribution in mesopores range and large pore volume (0.93 cm3g1). The electrochemical performance of the material in 1 M KOH aqueous electrolyte was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The influence of scan rate and current density were evaluated. The results showed high specific capacitance and good capacitance retention over high scan rate and current density. The OMC can be used as alternative electrode material in EDLC and supercapacitor application.

 

Keywords: Electrochemical; ordered mesoporous carbon; SBA-15; sugar; template

 

References

 

[1].                   X. Wu, X. Hong, J. Nan, Z. Luo, Q. Zhang, L. Li, H. Chen, K.S. Hui, Microporous and Mesoporous Materials 160 2531 (2012)

[2].                   T. Matsui, S. Tanaka, Y. Miyake, Advanced Powder Technology 24 737742 (2013)

[3].                   X. Wu, X. Hong, Z. Luo, K.S. Hui, H. Chen, J. Wu, K.N. Hui, L. Li, J. Nan, Q. Zhang, Electrochimica Acta 89 400406 (2013)

[4].                   X. Zhao, Q. Zhang, B. Zhang, C-M Chen, J. Xu, A. Wang, D. S. Su, T. Zhang, RSC Adv. 3 3578 (2013)

[5].                   V.K. Saini, M. Andrade, M.L. Pinto, A.P. Carvalho, J. Pires, Separation and Purification Technology 75 366 (2010)

[6].                   K.P. Gierszal, M. Jaroniec, T-W Kim, J. Kim, R. Ryoo, New J. Chem. 32 981993 (2008)

[7].                   D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 120 60246036 (1998)

[8].                   Ryoo, S.H. Joo, S. Jun, J. Phys. Chem. B 103 77437746 (1999)

[9].                   K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure & Appl. Chem. 57 603619 (1985)

[10].                 M. Ignat, E. Popovici, Rev. Roum. Chim. 56 947952 (2011)

[11].                 A. Vinu, P. Srinivasu, M. Takahashi, T. Mori, V.V. Balasubramanian, K. Ariga, Microporous and Mesoporous Materials 100 2026 (2007)

[12].                 A. Fallah, D. Kordestani, A. Alizadeh, S. Endud, Advanced Materials Research 622623 757761 (2013)

[13].                 H. Luo, F. Zhang, X. Zhao, Y. Sun, K. Du, H. Feng, J Mater Sci: Mater Electron 25 538545 (2014)

[14].                 X. Zhai, J. Liu, P. Li, M. Zhong, C. Ma, H. Wang, Q. Guo, Y. Song, L. Zhi, Int. J. Electrochem. Sci. 7 73047312 (2012)