Effects of Carbon Fiber Orientation on Electromagnetic Interference Shielding Performances

 

M. Sharif, S. P. Chew, S. Shamini, M.N. Norazman

 

Department of Electronics and Electrical Engineering, Faculty of Engineering, National Defence University of Malaysia, 57000 Kuala Lumpur, Malaysia.

 

Corresponding author: sueping@upnm.edu.my

 

Abstract

 

The high thermal-conductive carbon fiber is a promising electromagnetic interference (EMI) shielding material. This material is gaining popularity in building construction as it is corrosion resistant, has high tensile strength, is light weight and low in cost as compared to commonly used metal shielding which is heavy weighted and prone to EMI leakage at joints of building structures. This paper presents the investigations of EMI shielding effectiveness on multilayer carbon fiber composite with different orientations. Three concrete samples are considered in different orientations and are experimentally tested via shielding effectiveness (SE). The SE experiment set-up consists of a planar sample with its input and output connected to a vector network analyzer (VNA) in the frequency range of 3.0 GHz to 4.2 GHz. Based on the conductivity measurements of different orientations, the shielding effectiveness is obtained as a function of frequency as the plane wave analysis correlates the conductivity and shielding effectiveness measurements. It is proven that the carbon orientation contributes to changes in conductivity due to the positioning of the electric field of the incident wave and thus, produces different shielding performances.

 

Keywords: Electromagnetic Shielding; Carbon Fiber; Shielding effectiveness (SE)

 

 

References

 

[1].             Das, N.C., Khastgir, D., Chaki, T.K., & Chakraborty, A. Composites Part A, 31 1069-1081 (2000)

[2].             Yang, S., Lozano, K., Lomeli, A., et al. Composites Part A-Applied Science and Manufacturing, 36 691-697 (2005)

[3].             Thomassin, J. M., Jerome, C., Pardoen, T., et al. Materials Science and Engineering R, 74 211-232 (2013)

[4].            Im, J. S., Kim, J. G., Bae, T. S., et al. Journal of Physics and Chemistry of Solids, 72 1175-1179 (2011)

[5].             Nam, I. W., Kim, H. K., & Lee, H. K. Construction and Building Materials, 30 480-487 (2012)

[6].             Morgan, D., & Peregrinus, P. A handbook of EMC testing and measurement. Institution of Electrical Engineers (IEE), London, 1995.

[7].             Chung, D. D. L. Carbon, 50 3342-3353 (2012)

[8].             Crespo, M., Mendez, N., Gonzalez, M., et al. Carbon, 74 63-72 (2014)

[9].             Gnidakouong, J. R. N., Kim, M., Park, H. W., et al. Composites: Part A, 50 73-80 (2013)

[10].           Singh, A. P., Gupta, B.P., et al. Carbon 56 86-96 (2013)

[11].           Aircraft demand prompts Toray to boost carbon fibre capacity. Reinforced Plastics, 51(9) 1-43 (2007)

[12].           Cao, M. S., Song, W. L., Hou, Z. L., et al. Carbon, 48 788-796 (2010)

[13].           Wang, R., He, F., Wan, Y., et al. Journal of Alloys And Compounds, 514 35-39 (2012)

[14].           Arjmand, M., Apperley, T., et al. Carbon, 50 5126-5134 (2012)

[15].           Jason, M. K., Nicholas, B. J. &, Julia A. K. Polymer Composites. 26 (5) 671678 (2005)

[16].           Ameli, A., Jung, P. U., & Park, C. B. Carbon, 60 379-391 (2013)

[17].           ASTM. Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. ASTM D 4935-99, 1999.6.

[18].           Christopher, J. V. K., & Denver, M. Composite Structures, 91 467-472 (2009)

[19].           Nam, I. W., Lee, H. K., & Jang, J. H. Composites Part A-Applied Science and Manufacturing, 42 1110-1118 (2011)

[20].           Theilmann, P., Yun, D.J., Asbeck, P., & Park, S.H. Organic Electronics, 14 1531-1537 (2013)

[21].           Master, VNA. Model MS2026B Data Sheet, Vector Network Analyzer 5 kHz to 6 GHz FieldFox handheld RF cable and antenna analyzer.

[22].           Ruslan, M. S., & Chew, S. P. Advanced Materials Research, 748 309-313, (2009)