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ABSTRACT 

 
We develop a computational procedure to calculate the properties of electron states in a 
Si n-MOS inversion layer by discretizing and iteratively solving the differential 
Schrödinger and Poisson equations using centered finite differences. In this self-
consistent calculation, we apply an adaptive boundary condition to the wave function 
and confining potential at the bulk side of the nanostructure; and incorporate Fermi-
Dirac distribution for the ionized acceptor density in the inversion and depletion layers. 
This requires relatively simpler inputs and we are able to determine the various 
parameters of the electron state subbands. We compared our results with those 
published in the literature applying self-consistent Schrödinger-Poisson calculation on 
similar Si n-MOS nanostructures. 
 
Keywords: MOS inversion layer; nanostructure; self-consistent calculation; 
Schrödinger-Poisson; electron state 
 

INTRODUCTION 
 
The self-consistent method based on iterative solutions of the Schrödinger and Poisson 
equations was developed in the 1970s to calculate the properties of electron states in an 
n-channel metal oxide semiconductor (n-MOS) nanostructure which consists of a metal 
gate, an oxide layer of silicon dioxide (SiO2) and a p-doped semiconductor layer of 
silicon [1]. Since then the self-consistent method has been expanded and applied to 
model and simulate the electronic and optical properties of other semiconductor 
nanostructures and devices such as quantum well, quantum wire, quantum dot, 
photodetector and transistor [2-9]. Self-consistent calculations produce various material 
parameters by incorporating factors such as Hartree potential, gate potential, electric 
field, doping, exchange-correlation, strain and piezoelectric field. However, these 
calculations usually use variational method to derive the trial potential profile and 
relaxation of potential to achieve self-consistency, requiring more complicated input 
parameters. We hereby apply a combination of adaptive boundary condition for the 
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wave function and confining potential; and Fermi-Dirac distribution for the ionized 
acceptor density to achieve faster convergence and self-consistency in the Schrödinger-
Poisson calculation of this nanostructure system. 
 
 

THEORY 
 
Using the effective mass approximation, the one-dimensional Schrödinger equation of 
electron states in the MOS nanostructure is 
    .      
  (1) 
where m is the electron effective mass, e is the electron charge; and the potential energy 
of the Hamiltonian, V(z), is assumed to contain only the Hartree component, 

. The Schrödinger equation is solved to obtain the subband energy 
(eigenvalue), Ei, and wave function (eigenfunction), , of the quantized electron states. 
Then the energies and wave functions of the occupied subbands of i are used in the 
Poisson equation, 
             
  (2) 
to calculate the Hartree or electrostatic potential . Here ε0 is the dielectric constant 
of free space, εr = 11.7 is the relative permittivity of the Si [1,9] semiconductor layer 
and Ni is the sheet density of subband i at absolute temperature T given by 
            
  (3) 
with  kB the Boltzmann constant,  the reduced Planck constant, EF the Fermi energy 
and nv the degeneracy of the conduction band valley. For Si, m at the conduction band 
valley is either along the longitudinal direction with value 0.916 me and nv = 2; or along 
the transverse direction with value 0.190 me and nv = 4. The depletion region charge 
density of  is related to the three-dimensional ionized donor and acceptor densities 
of  and , respectively, by .  Two models are 
used to determine the ionized doping densities. The first model, simpler and valid at 
high temperatures, assumes that the dopant atoms are fully ionized (fA = 0) and requires 
the value of the depletion layer thickness zd [2,4,9], 

          .       

  (4) 
The second model of ionized doping densities  assumes that the densities of the ionized 
dopants follow a Fermi-Dirac distribution (fA = 1) [6,8], 

           (5) 
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where EA and ED are the respective activation energies of the acceptors and donors in 
the doped semiconductor material;  and gv is the degeneracy of the valence band valley. 
Thus, in this model the ionized doping densities are functions of temperature, activation 
energy, Fermi energy, local potential and band valley degeneracy. For Si,  EA and ED 
are around 50 meV [3]; and gv = 4 [8]. In this study, we assume that the semiconductor 
layer is p-doped, ND = 0, leading to an n-channel MOS nanostructure. The Fermi energy 
level is determined from charge conservation by , where the inversion 
layer sheet density NS is equal to the total sheet densities of the M lowest occupied 
electron subbands. Thus, the subband occupation factor of subband i is fi = Ni/NS. At 
absolute zero, T = 0 K,  reduces to  ; and  for 
p-doping   [8] with  the Heaviside step 

function,  = . 
 
The average lenth of subband i from the oxide interface is 

          

  (6) 
where the subband wave functions are orthonormal, . The 
average length of electrons in the inversion or depletion layer is then 
              
  (7) 
The sheet density of the depletion layer for uniform step size, , is 
         
  (8) 
In this self-consistent calculation, the second order Schrodinger and Poisson differential 
equations are numerically solved consecutively and iteratively using second order finite 
differences,  . We assume that the wave functions vanish at the 
oxide layer of infinite potential and at the depletion layer length, . 
The Hartree potential is defined as zero at the oxide interface, , and constant 
at the bulk end, . Here  is defined as the distance where the confining 
potential becomes constant, . Our zd changes with 
iteration, and we define this as the adaptive boundary condition. The convergence of the 
potential and energy levels are usually used as the stopping criteria but here we just 
iterate until 100 steps and monitor the valus of these parameters. 
 

RESULT AND DISCUSSION 
 
Table 1 presents the results of the self-consistent Schrodinger-Poisson calculation for 
the two lowest electron states in the inversion layer of the Si n-MOS nanostructure at T 
= 0 K using   cm-3, m = 0.916 me, nv = 2 and various valus of Ns. Our 
calculation results, shown as (1), are for ionized acceptor densities at both fA = 0 (all 
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dopants ionized) and fA = 1 (ionized according to Fermi-Dirac distribution). There is no 
significant difference in the values of the calculated parameters between the ionized 
acceptor density models, except for the sheet density of the depletion layer, Nd. In (2) 
are the published results of [1] with similar input parameters but using the condition of 
fA = 0. Compared to the results of [1], our calculated values of E0 are similar, our z0 are 
comparable and our Nd  are ~103 smaller. 
 
Table 1: Self-consistent Schrodinger-Poisson calculation results for electron states in 
the inversion layer of the Si n-MOS nanostructure T = 0 K. Shown in (1) are the results 
of the present calculation and in (2) are the published results of [1] for similar input 
parameters 
 

  Ns ( cm-2) 1 2 5 10 
(1) Vd  (meV) 45.5 93.5 198.9 331.7 

zd  (nm) 2.7 3.1 3.1 3.0 
EF (meV) 75.2 107.2 197.1 306.8 
E0 (meV) 73.9 104.6 190.6 303.3 
E1 (meV) 184.2 191.6 280.6 406.1 
z0  (nm) 1.56 1.60 1.36 1.14 

 (nm) 2.95 3.03 2.58 2.15 
z1 (nm) 1.68 1.93 2.02 2.02 
f0 (%) 100.0 100.0 100.0 100.0 
f1 (%) 0.0 0.0 0.0 0.0 
Nd ( cm-2) (fA=0) 2.7 3.1 3.1 3.0 
Nd ( cm-2) (fA=1) 0.8 1.0 1.1 1.1 

(2) E0 (meV) 71.5 108.7 195.1 306.8 
  z0 (nm) 4.26 3.56 2.72 2.19 

Nd ( cm-2) 1.207 1.204 1.198 1.192 
 
 
 
Our simulation results at room temperature, T = 300 K, with material parameters similar 
to [9] and  fA = 0 are shown in Table 2 for the calculated Ei, Pi, zi and their respective 
standard errors for subband i of the M = 5 lowest electron states. Here, we used 

 cm-3 and   cm-2. The results of the present calculation are 
shown in (1) and the published results of [9] are shown in (2). Table 3 presents the 
respective results for  fA = 1 and Table 4 presents some of the derived  paremeters.  
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Figure 1:  Variation with iteration of calculated EF and Ei of the 5 lowest electron states 
in a Si n-MOS inversion layer at 300K for (a) fA = 0 and for (b)  fA = 1 

 
Table 2: Self-consistent Schrodinger-Poisson calculation results for 5 lowest electron 
states in the inversion layer of the Si n-MOS nanostructure at T = 300 K and fA = 0. The 
results of the present calculation with fA = 0 are shown in (1) and the published results 
of [9] are shown in (2) 
 

       (1)            (2)   

m,  nv i 
Ei 

(meV) 
ΔEi 

(meV)
fi  

(%) 
Δfi 
(%) 

zi 
(nm) 

Δ zi 
(nm)

Ei 
(eV) Pi  (%) 

zi 
(nm)

ml = 0.916 me 0 307.0 6.8 96.3 1.3 1.15 0.14 245.3 79.9 1.11
nv = 2 1 400.7 17.1 4.0 1.3 2.32 0.02 355.4 3.4 2.39

2 511.1 13.5 0.1 0.0 2.23 0.07 424.5 0.2 3.44
3 672.5 10.6 0.0 0.0 2.17 0.05 - - - 
4 880.9 7.5 0.0 0.0 2.14 0.05 - - - 

mt = 0.190 me 0 517.9 0.0 100.3 0.0 1.86 0.00 352.5  16.4(?) 2.28
nv = 4 1 728.7 0.0 0.1 0.0 2.99 0.00 488.3 0.1 4.46

2 1057.2 0.0 0.0 0.0 2.83 0.00 590.2 0.0 6.19
3 1524.4 0.0 0.0 0.0 2.78 0.00 676.7 0.0 7.75

  4 2125.5 0.0 0.0 0.0 2.75 0.00 - - - 
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Table 3: Self-consistent Schrodinger-Poisson calculation results for 5 lowest electron 
states in the inversion layer of the Si n-MOS nanostructure at T = 300 K and  with  fA = 
1 anf  MeV 
 

m,  nv    i 
Ei 

(meV) 
ΔEi 

(meV) 
fi   

(%) 
Δfi 
(%) 

zi 
(nm) 

Δ zi 
(nm) 

ml = 0.916 0 304.9 0.1 97.5 0.0 1.13 0.00 
nv = 2 1 402.7 0.1 2.9 0.0 2.15 0.00 

2 536.9 0.1 0.0 0.0 2.02 0.00 
3 729.9 0.1 0.0 0.0 1.97 0.00 
4 978.1 0.1 0.0 0.0 1.95 0.00 

mt = 0.190 0 513.8 0.0 100.3 0.0 1.82 0.00 
nv = 4 1 760.9 0.0 0.0 0.0 2.67 0.00 

2 1162.7 0.0 0.0 0.0 2.55 0.00 
3 1730.7 0.0 0.0 0.0 2.51 0.00 

  4 2459.8 0.0 0.0 0.0 2.49 0.00 

 
Figure 2: Variation of , zd and  with iteration in the Si n-MOS inversion and 
depletion layer at 300 K for (a)  fA = 0 and for  (b) fA = 1 
 
Figure 1 shows the variations of of EF and Ei for  the 5 lowest electron subbands for fA = 
0 and for  fA = 1 at 300 K. It is seen that fA = 0 results in oscillations with energy 
uncertainties of around 10 meV and fA = 1 leads to convergence at iteration steps of 
around 20. Figure 2 presents the corresponding variations of , zd and  with 
iteration. A faster convergence is seen to be  achieved with  fA = 1. From our 
calculations, we estimate zav to be 1-2 nm and zd ~3-4 nm. 
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Table 4: Summarised parameters for T = 300 K. Shown at the right side of each column 
are the errors of the calculated parameters 
 
 

 option   0       1     
m ml  mt  ml  mt   

EF (meV) 294.9 7.3 540.4 0.0 293.3 0.0 536.3 0.0 
Vd (meV) 354.8 23.6 556.5 0.0 340.5 0.2 534.5 0.0 
zd (nm) 3.6 0.1 4.8 0.0 3.2 0.0 4.3 0.0 

Nd (1011 cm-2) 1.78 0.03 2.40 0.00 3.85 0.00 1.01 0.00 
zav (nm) 1.19 0.08 1.89 0.00 1.17 0.00 1.82 0.00 

 
 

CONCLUSION 
 
A self-consistent computational procedure using adaptive boundary condition has been 
developed to model electron states in a silicon n-MOS nanostructure. The use of 
adaptive boundary condition and Fermi-Dirac ionized donors results in faster 
convergence of output parameters and simpler input requirements. The obtained 
parameters could be further used to determine the optical properties of this 
nanostructure and other quantum devices.  
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